Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[41. COMMENTARIVS.]
[42. LEMMA I.]
[43. LEMMA II.]
[44. LEMMA III.]
[45. LEMMA IIII.]
[46. LEMMA V.]
[47. LEMMA VI.]
[48. II.]
[49. III.]
[50. IIII.]
[51. V.]
[52. DEMONSTRATIO SECVNDAE PARTIS.]
[53. COMMENTARIVS.]
[54. DEMONSTRATIO TERTIAE PARTIS.]
[55. COMMENTARIVS.]
[56. DEMONSTRATIO QVARTAE PARTIS.]
[57. DEMONSTRATIO QVINT AE PARTIS.]
[58. FINIS LIBRORVM ARCHIMEDIS DE IIS, QVAE IN AQVA VEHVNTVR.]
[59. FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORV M.]
[60. CVM PRIVILEGIO IN ANNOS X. BONONIAE, Ex Officina Alexandri Benacii. M D LXV.]
[61. ALEXANDRO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.]
[62. FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORVM. DIFFINITIONES.]
[63. PETITIONES.]
[64. THEOREMA I. PROPOSITIO I.]
[65. THEOREMA II. PROPOSITIO II.]
[66. THE OREMA III. PROPOSITIO III.]
[67. THE OREMA IIII. PROPOSITIO IIII.]
[68. ALITER.]
[69. THEOREMA V. PROPOSITIO V.]
[70. COROLLARIVM.]
< >
page |< < (7) of 213 > >|
DE CENTRO GRAVIT. SOLID.
metrum habens e d. Quoniam igitur circuli uel ellipſis
a e c b grauitatis centrum eſt in diametro b e, &
portio-
nis a e c centrum in linea e d:
reliquæ portionis, uidelicet
a b c centrum grauitatis in ipſa b d conſiſtat neceſſe eſt, ex
octaua propoſitione eiuſdem.

THEOREMA V. PROPOSITIO V.

SI priſma ſecetur plano oppoſitis planis æqui
diſtante, ſectio erit figura æqualis &
ſimilis ei,
quæ eſt oppoſitorum planorum, centrum graui
tatis in axe habens.
Sit priſma, in quo plana oppoſita ſint triangula a b c,
d e f;
axis g h: & ſecetur plano iam dictis planis æquidiſtã
te;
quod faciat ſectionem K l m; & axi in pũcto n occurrat.
Dico _k_ l m triangulum æquale eſſe, & ſimile triangulis a b c
d e f;
atque eius grauitatis centrum eſſe punctum n. Quo-
niam enim plana a b c
Figure: /permanent/library/4E7V2WGH/figures/0125-01 not scanned
[Figure 82]
K l m æquidiſtantia ſecã
16. unde-
cimi.
tur a plano a e;
rectæ li-
neæ a b, K l, quæ ſunt ip
ſorum cõmunes ſectio-
nes inter ſe ſe æquidi-
ſtant.
Sed æquidiſtant
a d, b e;
cum a e ſit para
lelogrammum, ex priſ-
matis diffinitione.
ergo
&
al parallelogrammũ
erit;
& propterea linea
34. prim@_k_l, ipſi a b æqualis.
Si-
militer demonſtrabitur
l m æquidiſtans, &
æqua
lis b c;
& m K ipſi c a.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index