Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
31 10
32
33 11
34
35 12
36
37 13
38
39 14
40
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
< >
page |< < (4) of 213 > >|
DE CENTRO GRAVIT. SOLID.
o n ipſi a c. Quoniam enim triangulorum a b k, a d k, latus
b k eſt æquale lateri k d, &
a k utrique commune; anguliq́;
ad k recti baſis a b baſi a d; & reliqui anguli reliquis an-
8. primigulis æquales erunt.
eadem quoqueratione oſtendetur b c
æqualis c d;
& a b ipſi
Figure: /permanent/library/4E7V2WGH/figures/0119-01 not scanned
[Figure 75]
b c.
quare omnes a b,
b c, c d, d a ſunt æqua-
les.
& quoniam anguli
ad a æquales ſunt angu
lis ad c;
erunt anguli b
a c, a c d coalterni inter
ſe æquales;
itemq́; d a c,
a c b.
ergo c d ipſi b a;
& a d ipſi b c æquidi-
ſtat.
Atuero cum lineæ
a b, c d inter ſe æquidi-
ſtantes bifariam ſecen-
tur in punctis e g;
erit li
nea l e k g n diameter ſe
ctionis, &
linea una, ex
demonſtratis in uigeſi-
ma octaua ſecundi coni
corum.
Et eadem ratione linea una m f k h o. Sunt autẽ a d,
b c inter ſe ſe æquales, &
æquidiſtantes. quare & earum di-
midiæ a h, b f;
itemq́; h d, f e; & quæ ipſas coniunguntrectæ
33. primitlineæ æquales, &
æquidiſtantes erunt. æquidiſtãt igitur b a,
c d diametro m o:
& pariter a d, b c ipſi l n æquidiſtare o-
ſtendemus.
Si igitur manẽte diametro a c intelligatur a b c
portio ellipſis ad portionem a d c moueri, cum primum b
applicuerit ad d, cõgruet tota portio toti portioni, lineaq́;
b a lineæ a d; & b c ipſi c d congruet: punctum uero e ca-
det in h;
f in g: & linea k e in lineam k h: & k f in k g. qua
re &
el in h o, et fm in g n. Atipſa lz in z o; et m φ in φ n
cadet.
congruet igitur triangulum l k z triangulo o k z: et

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index