Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
< >
page |< < of 213 > >|
ARCHIMEDIS

LEMMA II.

Sint duæ portionis ſimiles, contentæ rectis lineis, &
rectangulorum conorum ſectionibus;
a b c quidem ma-
ior, cuius diameter b d;
e f c uero minor, cuius diameter
fg:
aptenturq; inter ſeſe, ita ut maior minorem includat
&
ſint earum baſes a c, e c in eadem recta linea, ut idẽ
punctum c ſit utriuſque terminus:
ſumatur deinde in ſe
ctione a b c quodlibet punctum b:
& iungatur h c. Di
co lineam h c ad partem ſui ipſius, quæ inter c, &
ſe-
ctionem e f c interiicitur, eam proportionẽ habere, quam
habet a c ad c e.
_Dvcatvr_ b c, quæ tranſibit per f. quoniam enim portiones
ſimiles ſunt, diametri cú baſibus æquales continent angulos.
quare
æquidiſtant inter ſe ſe b d, f g:
éſtq; b d ad a c, ut f g ad e c:
& permu-
Figure: /permanent/library/4E7V2WGH/figures/0074-01 not scanned
[Figure 46]
tando b d ad
f g, ut a c ad
c e:
hoc eſt
15. quin-
ti.
ut earum di-
midiæ d c ad
c g.
ergo ex
antecedēti lé
mate ſequi-
tur lineá b c
per punctum
f tranſire.
Ducatur præ
terea à puncto h ad diametrum b d linea h K, æquidiſtans baſi
a c:
& iuncta k c, quæ diametrum f g ſecet in l; per l ducatur

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index