Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
31 10
32
33 11
34
35 12
36
37 13
38
39 14
40
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
< >
page |< < of 213 > >|
FED. COMMANDINI
centrum z: parallelogram mi a d, θ: parallelogrammi f g, φ:
parallelogrammi d h, χ: &
Figure: /permanent/library/4E7V2WGH/figures/0132-01 not scanned
[Figure 88]
parallelogrammi c g centrũ
ψ:
atque erit ω punctum me
dium uniuſcuiuſque axis, ui
delicet eius lineæ, quæ oppo
ſitorum planorũ centra con
iungit.
Dico ω centrum effe
grauitatis ipſius ſolidi.
eſt
enim, ut demonſtrauimus,
6. huiusſolidi a f centrum grauitatis
in plano K n;
quod oppoſi-
tis planis a d, g f æ quidiſtans
reliquorum planorum late-
ra biſariam diuidit:
& fimili
rationeidem centrum eſt in plano o r, æ quidiſtante planis
a e, b f oppo ſitis.
ergo in communi ipſorum fectione: ui-
delicet in linea y z.
Sed eſt etiam in plano t u, quod quidẽ
y z ſecat in ω.
Conſtat igitur centrum grauitatis ſolidi eſſe
punctum ω, medium ſcilicet axium, hoc eſt linearum, quæ
planorum oppoſitorum centra coniungunt.
Sit aliud prima a f; & in eo plana, quæ opponuntur, tri-
angula a b c, d e f:
diuiſisq; bifariam parallelogrammorum
lateribus a d, b e, c f in punctis g h κ, per diuiſiones planũ
ducatur, quod oppoſitis planis æ quidiſtans faciet ſe ctionẽ
triangulum g h k æ quale, &
ſimile ipſis a b c, d e f. Rurſus
diuidatur a b bifariam in l:
& iuncta c l per ipſam, & per
c _K_ f planum ducatur priſma ſecans, cuius, &
parallelogrã
mi a e communis ſcctio ſit l m n.
diuidet pun ctum m li-
neam g h bifariam;
& ita n diuidet lineam d e: quoniam
triangula a c l, g k m, d f n æ qualia ſunt, &
ſimilia, ut ſu pra
5. huiusdemonſtrauimus.
Iam ex iis, quæ tradita ſunt, conſtat cen
trum greuitatis priſmatis in plano g h k contineri.
Dico
ipſum eſſe in linea k m.
Si enim fieri poteſt, ſit o centrum;

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index