Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
< >
page |< < (35) of 213 > >|
DE IIS QVAE VEH. IN AQVA.
proportionem, quam c e ad e a. ſimiliter demonſtrabitur eandem
babere n o ad o f:
& reliquas eiuſmodi, at uero b K ad K e eam
habere proportionem, quam habet c e ad e a, ex eadem quinta.
Ar-
chimedis perſpicue apparet.
at que illud eſt, quod demonſtr andum
propoſuimus.

LEMMA VI.

Itaque maneant eadem, quæ ſupra: & itidem deſcri-
batur alia portio ſimilis contenta recta linea &
rectan-
guli coni ſectione d r c;
cuius diameter r s, ut ſecet li-
neam f g in t:
producaturque s r ad lineam c h in u;
cuiſectio a b c occurrat in x, & e f c in y. Dico b m
ad m d proportionem habere compoſitam ex propor-
tione, quam babet e a ad a c;
& ex ea, quam c d ba-
bet ad de.
S_imiliter_ enim ut ſupra, demonſtrabimus lineam c h con-
tingere ſectioné d r c in c puncto:
& l m ad m d, itêmq; n f ad f t;
& u y ad y r ita eſſe, ut c d ad d e. Quoniam igitur lb ad b m eſt,
ut c e ad e a;
erit componendo, conuertendôq; bm ad lm, ut e a ad
a c:
& ut lm ad m d, ita c d ad d e. proportio autem b m ad m d
compoſita eſt ex proportione, quam habet b m ad l m, &
ex propor
tione, quam l m habet ad m d.
ergo proportio b m ad m d etiam com
poſita erit ex proportione, quam habet e a, ad a c;
& ex ea, quam
c d habet ad d e.
Eadem ratione demonſtrabitur o f ad f t; itêmq;
x y ad y r proportionem habere ex eiſdem proportionibus compo-
ſitam:
& ita in aijs. quod demonſtrare oportebat.
Ex quibus apparet lineas ſic ductas, quæ inter ſectio
nes a b c, d r c interiiciuntur à ſectione e f c in eandem
proportionem diuidi.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index