Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
1
2
3
4
5
6
7
8
9
10
11
12
13 1
14
15 2
16
17 3
18
19 4
20
21 5
22
23 6
24
25 7
26
27 8
28
29 9
30
< >
page |< < of 213 > >|
ARCHIMEDIS
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="17">
          <p>
            <s xml:space="preserve">
              <pb file="0024" n="24" rhead="ARCHIMEDIS"/>
            in linea ft. </s>
            <s xml:space="preserve">nam ſit primum figura maior dimidia ſphære:
              <lb/>
            </s>
            <s xml:space="preserve">ſitq; </s>
            <s xml:space="preserve">in dimidia ſphæra ſphæræ centrum t; </s>
            <s xml:space="preserve">in minori por-
              <lb/>
            tioneſit centrum p; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">in maiori _k_: </s>
            <s xml:space="preserve">per _k_ uero, & </s>
            <s xml:space="preserve">terræ cen
              <lb/>
            trum l ducatur _k_ l ſecans circunferentiam e f h in pun-
              <lb/>
            cto n. </s>
            <s xml:space="preserve">Quoniam igitur unaquæque ſphæræportio axem
              <lb/>
              <anchor type="note" xlink:label="note-0024-01a" xlink:href="note-0024-01"/>
            habet in linea, quæ à cẽtro ſphæræ ad cius baſim perpen-
              <lb/>
            dicularis ducitur: </s>
            <s xml:space="preserve">habetq; </s>
            <s xml:space="preserve">in axe grauitatis centrum:
              <lb/>
            </s>
            <s xml:space="preserve">portionis in humido demerſæ, quæ ex duabus ſphæræ
              <lb/>
            portionibus conſtat, axis erit in perpendiculari per _k_ du-
              <lb/>
            cta. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">idcirco centrum grauitatis ipſius erit in linea n _k_,
              <lb/>
            quod ſit r. </s>
            <s xml:space="preserve">ſed totius portionis grauitatis centrum eſt in li
              <lb/>
              <anchor type="note" xlink:label="note-0024-02a" xlink:href="note-0024-02"/>
            nea f t inter _k_, & </s>
            <s xml:space="preserve">f, quod ſit x. </s>
            <s xml:space="preserve">reliquæ ergo figuræ, quæ eſt
              <lb/>
              <anchor type="note" xlink:label="note-0024-03a" xlink:href="note-0024-03"/>
            extra humidum, centrum erit in linea r x producta ad par
              <lb/>
            tes x; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">aſſumpta ex ea, linea quadam, quæ ad r x eandem
              <lb/>
            proportionem habeat, quam grauitas portionis in humi-
              <lb/>
            do demerſæ habet ad grauitatem figuræ, quæ eſt extra hu-
              <lb/>
            midum. </s>
            <s xml:space="preserve">Sit autem s centrum dictæ figuræ: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per s duca-
              <lb/>
            tur perpendicularis l s. </s>
            <s xml:space="preserve">Feretur ergo grauitas figuræ qui-
              <lb/>
              <anchor type="note" xlink:label="note-0024-04a" xlink:href="note-0024-04"/>
            dem, quæ extra humidum per rectam s l deorſum; </s>
            <s xml:space="preserve">portio
              <lb/>
            nis autem, quæ in humido, ſurſum per rectam r l. </s>
            <s xml:space="preserve">quare
              <lb/>
            non manebit figura: </s>
            <s xml:space="preserve">ſed partes eius, quæ ſunt ad e, deor-
              <lb/>
            ſum; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quæ ad h ſurſum ſerẽtur: </s>
            <s xml:space="preserve">idq; </s>
            <s xml:space="preserve">cõtinenter fiet, quoad
              <lb/>
            ſ t ſit ſecundum perpendicularem. </s>
            <s xml:space="preserve">Eodem modo in aliis
              <lb/>
            portionibus idem demonſtrabitur.</s>
            <s xml:space="preserve">]</s>
          </p>
          <div type="float" level="2" n="2">
            <note position="right" xlink:label="note-0023-03" xlink:href="note-0023-03a" xml:space="preserve">Suppleta
              <lb/>
            a Federi-
              <lb/>
            co Cõm.</note>
            <figure xlink:label="fig-0023-01" xlink:href="fig-0023-01a">
              <image file="0023-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0023-01"/>
            </figure>
            <note position="left" xlink:label="note-0024-01" xlink:href="note-0024-01a" xml:space="preserve">C</note>
            <note position="left" xlink:label="note-0024-02" xlink:href="note-0024-02a" xml:space="preserve">D</note>
            <note position="left" xlink:label="note-0024-03" xlink:href="note-0024-03a" xml:space="preserve">E</note>
            <note position="left" xlink:label="note-0024-04" xlink:href="note-0024-04a" xml:space="preserve">F</note>
          </div>
          <figure>
            <image file="0024-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0024-01"/>
          </figure>
        </div>
      </text>
    </echo>