Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Page concordance

< >
Scan Original
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000082">
                <pb pagenum="15" xlink:href="010/01/023.jpg"/>
                <arrow.to.target n="marg15"/>
                <lb/>
              Y in ſecundo & ſubleuata vſque ad V; tunc quidem̨
                <lb/>
              centrum grauitatis prædictæ aquæ horizontaliter
                <expan abbr="cõ-ſtitutæ">con­
                  <lb/>
                ſtitutæ</expan>
              præcisè incidet in
                <expan abbr="cẽtro">centro</expan>
              ſuſpenſionis M, prop­
                <lb/>
              terea quòd vt baſis V ad baſim A ſeù vt cylindrus a­
                <lb/>
              queus GLV ad equè altum cy­
                <lb/>
                <figure id="id.010.01.023.1.jpg" xlink:href="010/01/023/1.jpg"/>
                <lb/>
              lindrum AEF in primo caſu vel
                <lb/>
              ad CEF in ſecundo, ita fuit reci­
                <lb/>
              procè diſtantia EM ad ML. o­
                <lb/>
              ſtendendum modò eſt punctą
                <lb/>
              A, Q, R, S, M in eadèm linea pa­
                <lb/>
              rabolica eſſe. </s>
              <s id="s.000083">quia moles aquæ
                <lb/>
              TX æqualis eſt æquæ moli GH
                <lb/>
              I, ergo, XBF vnà cum GHI æ­
                <lb/>
              qualis eſt moli aqueæ TAF; e­
                <lb/>
              rat verò moles aquæ XBF vnà
                <lb/>
              cum GHI ad GHI vt linea HB
                <lb/>
              ad BQ ſeu (ducta QN parallel­
                <lb/>
              là AE) vt LE ad EN, ergo FAT
                <lb/>
              ad TX atque ſemiſſis illius FA
                <lb/>
              ad huius ſemiſſem AB eamdem
                <lb/>
              proportionem habebit quam̨
                <lb/>
              LE ad EN, eſt verò EA ad AF vt MA ad AG, ſeù vt
                <lb/>
              ME ad EL, ergo ex æqualitate ordinata EA ad AB
                <lb/>
              eamdem proportionem habebit quam ME ad EN, &
                <lb/>
              per conuerſionem rationis EA ad EB erit vt EM ad
                <lb/>
              MN, ſeù vt EB ad NQ, erunt igitur tres continuæ pro
                <lb/>
              portionales EA, EB, & NQ in eadem ratione quam̨
                <lb/>
              habet EM ad MN, quare quadratum ex EM ad qua­
                <lb/>
              dratum ex MN eam proportionem habebit, quam̨ </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>