Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Page concordance

< >
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.001199">
                <pb pagenum="233" xlink:href="010/01/241.jpg"/>
                <arrow.to.target n="marg311"/>
                <lb/>
              ſeu energiæ compreſſionis, quam patitur pars B,
                <expan abbr="quã-do">quan­
                  <lb/>
                do</expan>
              ambo poſt flexionem, & motum quieſcunt; ergo
                <lb/>
              momentum
                <expan abbr="potẽtiæ">potentiæ</expan>
              P æqua­
                <lb/>
                <figure id="id.010.01.241.1.jpg" xlink:href="010/01/241/1.jpg"/>
                <lb/>
              le eſt
                <expan abbr="momẽto">momento</expan>
                <expan abbr="reſiſtẽtiæ">reſiſtentiæ</expan>
              , ſeu
                <lb/>
              energiæ, compreſſionis,
                <expan abbr="quã">quam</expan>
                <lb/>
              patitur B, & fiunt niſus per
                <lb/>
              eamdem rectam perpendi­
                <lb/>
              cularem ad horizontem, igi­
                <lb/>
              tur abſoluta potentia P æ­
                <lb/>
              qualis | eſt reſiſtentiæ abſolutæ, ſeu vi compreſſionis,
                <lb/>
              quam patitur B. </s>
              <s id="s.001200">Pari ratione abſoluta potentia E, vel
                <lb/>
              G æquatur reſiſtentiæ, ſeu vi compreſſionis partis op­
                <lb/>
              poſitæ C. vnde deducitur duas potentias P & E, ſeu
                <lb/>
              G ſimul ſumptas æquales eſſe reſiſtentiæ integræ, ſeu
                <lb/>
              vi totali compreſſionis, quam patitur anulus, vel ve­
                <lb/>
              ſica ABC. </s>
            </p>
            <p type="margin">
              <s id="s.001201">
                <margin.target id="marg311"/>
              Cap. 5. de ae
                <lb/>
              ris grauitate
                <lb/>
              æquilibrio,
                <lb/>
              ſtructura, &
                <lb/>
              vi elateria
                <lb/>
              eius.</s>
            </p>
            <p type="main">
              <s id="s.001202">Poſtea ſubſtituatur pauimentum durum RS loco
                <lb/>
              potentiæ flectentis E, vel G, & ſolummodo ſupernè
                <lb/>
              anulus, vel veſica aerea comprimatur à potentia P
                <lb/>
              ſcilicet à ſemiſſe potentiarum P, & E. </s>
              <s id="s.001203">Dico anulum̨,
                <lb/>
              vel veſicam aeream æquè conſtringi, ac priùs à dua­
                <lb/>
              bus potentijs contrarijs contundebatur. </s>
              <s id="s.001204">Quia paui­
                <lb/>
              mentum ſtabile RS perinde reagit impediendo mo­
                <lb/>
              tum, & deſcenſum ponderis P, ipſumque in eodem ſi­
                <lb/>
              tu quiete ſtabili permanere cogit, ac operatur manus
                <lb/>
              ſubiecta E, vel pondus G mediante libra FE, ergo
                <lb/>
              ſtabilitatis ſoli momentum æquatur momento, & po­
                <lb/>
              tentiæ abſolutæ ipſius E, ſeu P. quare anulus, ſeu ae­
                <lb/>
              rea veſica BC comprimitur non à ſingulari, & ſubdu-</s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>