Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
< >
page |< < of 213 > >|
ARCHIMEDIS
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="41">
          <p style="it">
            <s xml:space="preserve">
              <pb file="0072" n="72" rhead="ARCHIMEDIS"/>
            quindecim ad quatuor; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ad eam, quæ uſque ad axem maiorem pro
              <lb/>
            portionem habeat: </s>
            <s xml:space="preserve">erit quæ uſ que ad axem minor ipſa k c.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="6">
            <note position="right" xlink:label="note-0071-07" xlink:href="note-0071-07a" xml:space="preserve">F</note>
          </div>
          <note position="left" xml:space="preserve">10. quinti</note>
          <p>
            <s xml:space="preserve">Sit ei, quæ uſque ad axem æ qualis k r.</s>
            <s xml:space="preserve">] _Hac nos addidimus,_
              <lb/>
              <anchor type="note" xlink:label="note-0072-02a" xlink:href="note-0072-02"/>
            _quæ in translatione non erant._</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="7">
            <note position="left" xlink:label="note-0072-02" xlink:href="note-0072-02a" xml:space="preserve">G</note>
          </div>
          <p style="it">
            <s xml:space="preserve">_Eſt autem & </s>
            <s xml:space="preserve">s b ſeſquialtera ipſius b r.</s>
            <s xml:space="preserve">]_ Ponitur enim
              <lb/>
              <anchor type="note" xlink:label="note-0072-03a" xlink:href="note-0072-03"/>
            d b ſeſquialtera ipſius b k; </s>
            <s xml:space="preserve">itémq; </s>
            <s xml:space="preserve">d ſ ſeſquialtera k r. </s>
            <s xml:space="preserve">quare ut to
              <lb/>
            ta d b ad totam b K, ita pars d s ad partem K r. </s>
            <s xml:space="preserve">ergo & </s>
            <s xml:space="preserve">reliqua
              <lb/>
              <anchor type="note" xlink:label="note-0072-04a" xlink:href="note-0072-04"/>
            s b ad reliquim b r, ut d b ad b k.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="8">
            <note position="left" xlink:label="note-0072-03" xlink:href="note-0072-03a" xml:space="preserve">H</note>
            <note position="left" xlink:label="note-0072-04" xlink:href="note-0072-04a" xml:space="preserve">19. quinti</note>
          </div>
          <p style="it">
            <s xml:space="preserve">_Quæ ſimiles ſint portioni a b l.</s>
            <s xml:space="preserve">]_ Similes portiones coni ſe-
              <lb/>
              <anchor type="note" xlink:label="note-0072-05a" xlink:href="note-0072-05"/>
            ctionum Apollonius it. </s>
            <s xml:space="preserve">i diffiniuit in ſexto libro conicorum, ut ſcri-
              <lb/>
            bit Eutocius, εν οἱς α χ θεισω
              <unsure/>
            νἐν ἑηάστω παραλλήλων τῆ βάσει, ἵσωι
              <lb/>
            τὸ πλῆθος, ὰι παρὰλληλοι, καὶ αἱ βάσ{ει}ς πρ
              <unsure/>
            ὸς τὰςἀποτεμνομένας
              <lb/>
            ἀπὸ τῶν διαμέ τρων ταῖς νορυφαῖς ἐν τοῖς αὐτοῖ ς λὄγοιςεἰσἰ, καὶἁι
              <lb/>
            ἀποτεμνόμεναι πρ
              <unsure/>
            ὸς τάς ἀποτεμνομένας; </s>
            <s xml:space="preserve">hoc est. </s>
            <s xml:space="preserve">in quibus ſi du-
              <lb/>
            cantnr lineæ æquidistantes baſi numero æquales: </s>
            <s xml:space="preserve">æquidiſtantes atq;
              <lb/>
            </s>
            <s xml:space="preserve">baſes ad partes diametrorum, quæ ab ipſis ad uerticem abſcindũtur,
              <lb/>
            eandem proportionem babent: </s>
            <s xml:space="preserve">it émq; </s>
            <s xml:space="preserve">partes abſciſſæ ad abſciſſas. </s>
            <s xml:space="preserve">
              <lb/>
            ducuntur autem lineæ baſi æquidistantes: </s>
            <s xml:space="preserve">ut opinor, deſcripta in ſin
              <lb/>
            gulis plane rectilinea figura, quæ lateribus numero æqualibus conti
              <lb/>
              <anchor type="note" xlink:label="note-0072-06a" xlink:href="note-0072-06"/>
            neatur. </s>
            <s xml:space="preserve">Itaq; </s>
            <s xml:space="preserve">portiones ſimiles à ſimilibus coni ſectionibus abſcindũ
              <lb/>
            tur: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">earum diametri ſiue ad baſes rectæ, ſiue cum baſibus æ qua-
              <lb/>
            les angulos facientes, ad ipſas baſes eandem habent proportionem.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="9">
            <note position="left" xlink:label="note-0072-05" xlink:href="note-0072-05a" xml:space="preserve">K</note>
            <note position="left" xlink:label="note-0072-06" xlink:href="note-0072-06a" xml:space="preserve">γνωρίμως</note>
          </div>
          <p style="it">
            <s xml:space="preserve">_Tranſibit igitur a e i coni ſectio per k.</s>
            <s xml:space="preserve">]_ Sienim fieri po
              <lb/>
              <anchor type="note" xlink:label="note-0072-07a" xlink:href="note-0072-07"/>
            teſt non tranſeat per k, ſed per aliud punctum lineæ d b, ut per u.
              <lb/>
            </s>
            <s xml:space="preserve">Quoniam igitur in rectáguli coni ſectione a e i, cuius diameter e z,
              <lb/>
            ducta eſt a e, & </s>
            <s xml:space="preserve">producta: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">d b diametro æquidistans utraſque
              <lb/>
            a e, a i ſecat; </s>
            <s xml:space="preserve">a e quidem in b, ai uero in d: </s>
            <s xml:space="preserve">habebit d b ad b u
              <lb/>
            proportionem eandem, quam a z, ad z d, ex quarta propoſitione li
              <lb/>
            bri. </s>
            <s xml:space="preserve">Archimedis de quadratura parabol
              <unsure/>
            æ. </s>
            <s xml:space="preserve">Sed a z ſeſquialtera eſt
              <lb/>
            ipſius z d: </s>
            <s xml:space="preserve">eſt enim ut tria ad duo, quod mox demonſtrabimus. </s>
            <s xml:space="preserve">ergo
              <lb/>
            d b ſeſquialtera eſt ipſius b u. </s>
            <s xml:space="preserve">eſt auté d b & </s>
            <s xml:space="preserve">ipſius b k ſeſquialte
              <lb/>
            ra. </s>
            <s xml:space="preserve">quare lineæ b u, b k inter ſe æ quales ſunt; </s>
            <s xml:space="preserve">quod fieri non po-
              <lb/>
              <anchor type="note" xlink:label="note-0072-08a" xlink:href="note-0072-08"/>
            teſt. </s>
            <s xml:space="preserve">restanguli igitur com ſectio a e i per punctum k tranſibit.
              <lb/>
            </s>
            <s xml:space="preserve">quod demonstrare uolebamus.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="10">
            <note position="left" xlink:label="note-0072-07" xlink:href="note-0072-07a" xml:space="preserve">L</note>
            <note position="left" xlink:label="note-0072-08" xlink:href="note-0072-08a" xml:space="preserve">2. quinti.</note>
          </div>
        </div>
      </text>
    </echo>