Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
31 10
32
33 11
34
35 12
36
37 13
38
39 14
40
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
< >
page |< < of 213 > >|
FED. COMMANDINI
triangulum m k φ triangulo n k φ. ergo anguli l z k, o z k,
m φ k, n φ k æquales ſunt, ac recti.
quòd cum etiam recti
ſint, qui ad k;
æquidiſtabunt lineæ l o, m n axi b d. & ita.
28. primi.demonſtrabuntur l m, o n ipſi a c æquidiſtare. Rurſus ſi
iungantur a l, l b, b m, m c, c n, n d, d o, o a:
& bifariam di
uidantur:
à centro autem k ad diuiſiones ductæ lineæ pro-
trahantur uſque ad ſectionem in puncta p q r s t u x y:
& po
ſtremo p y, q x, r u, s t, q r, p s, y t, x u coniungantur.
Simili-
ter oſtendemus lineas
Figure: /permanent/library/4E7V2WGH/figures/0120-01 not scanned
[Figure 75]
p y, q x, r u, s t axi b d æ-
quidiſtantes eſſe:
& q r,
p s, y t, x u æquidiſtan-
tesipſi a c.
Itaque dico
harum figurarum in el-
lipſi deſcriptarum cen-
trum grauitatis eſſe pũ-
ctum k, idem quod &
el
lipſis centrum.
quadri-
lateri enim a b c d cen-
trum eſt k, ex decima e-
iuſdem libri Archime-
dis, quippe cũ in eo om
nes diametri cõueniãt.
Sed in figura alb m c n
13. Archi
medis.
d o, quoniam trianguli
alb centrum grauitatis
Vltima.eſt in linea l e:
trapezijq́; a b m o centrum in linea e k: trape
zij o m c d in k g:
& trianguli c n d in ipſa g n: erit magnitu
dinis ex his omnibus conſtantis, uidelicet totius figuræ cen
trum grauitatis in linea l n:
& o b eandem cauſſam in linea
o m.
eſt enim trianguli a o d centrum in linea o h: trapezij
a l n d in h k:
trapezij l b c n in k f: & trianguli b m c in fm.
cum ergo figuræ a l b m c n d o centrum grauitatis ſit in li-
nea l n, &
in linea o m; erit centrum ipſius punctum k, in

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index