Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
31 10
32
33 11
34
35 12
36
37 13
38
39 14
40
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
< >
page |< < (5) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="65">
          <p>
            <s xml:space="preserve">
              <pb o="5" file="0121" n="121" rhead="DE CENTRO GRAVIT. SOLID."/>
            quo ſcilicet ln, om conueniunt. </s>
            <s xml:space="preserve">Poſtremo in figura
              <lb/>
            a p l q b r m s c t n u d x o y centrum grauitatis trian
              <lb/>
            guli pay, & </s>
            <s xml:space="preserve">trapezii ploy eſtin linea a z: </s>
            <s xml:space="preserve">trapeziorum
              <lb/>
            uero lqxo, q b d x centrum eſtin linea z k: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">trapeziorũ
              <lb/>
            b r u d, r m n u in k φ: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">denique trapezii m s t n; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">triangu
              <lb/>
            li s c t in φ c. </s>
            <s xml:space="preserve">quare magnitudinis ex his compoſitæ centrū
              <lb/>
            in linea a c conſiſtit. </s>
            <s xml:space="preserve">Rurſus trianguli q b r, & </s>
            <s xml:space="preserve">trapezii q l
              <lb/>
            m r centrum eſt in linea b χ: </s>
            <s xml:space="preserve">trapeziorum l p s m, p a c s,
              <lb/>
            a y t c, y o n t in linea χ φ: </s>
            <s xml:space="preserve">trapeziiq; </s>
            <s xml:space="preserve">o x u n, & </s>
            <s xml:space="preserve">trianguli
              <lb/>
            x d u centrum in ψ d. </s>
            <s xml:space="preserve">totius ergo magnitudinis centrum
              <lb/>
            eſtin linea b d. </s>
            <s xml:space="preserve">ex quo ſequitur, centrum grauitatis figuræ
              <lb/>
            a p l q b r m s c t n u d x o y eſſe punctū _K_, lineis ſcilicet a c,
              <lb/>
            b d commune, quæ omnia demonſtrare oportebat.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <note position="right" xlink:label="note-0119-01" xlink:href="note-0119-01a" xml:space="preserve">8. primi</note>
            <figure xlink:label="fig-0119-01" xlink:href="fig-0119-01a">
              <image file="0119-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0119-01"/>
            </figure>
            <note position="right" xlink:label="note-0119-02" xlink:href="note-0119-02a" xml:space="preserve">33. primit</note>
            <note position="left" xlink:label="note-0120-01" xlink:href="note-0120-01a" xml:space="preserve">28. primi.</note>
            <figure xlink:label="fig-0120-01" xlink:href="fig-0120-01a">
              <image file="0120-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0120-01"/>
            </figure>
            <note position="left" xlink:label="note-0120-02" xlink:href="note-0120-02a" xml:space="preserve">13. Archi
              <lb/>
            medis.</note>
            <note position="left" xlink:label="note-0120-03" xlink:href="note-0120-03a" xml:space="preserve">Vltima.</note>
          </div>
        </div>
        <div type="section" level="1" n="66">
          <head xml:space="preserve">THE OREMA III. PROPOSITIO III.</head>
          <p>
            <s xml:space="preserve">Cuiuslibet portio-
              <lb/>
              <anchor type="figure" xlink:label="fig-0121-01a" xlink:href="fig-0121-01"/>
            nis circuli, & </s>
            <s xml:space="preserve">ellipſis,
              <lb/>
            quæ dimidia non ſit
              <lb/>
            maior, centrum graui
              <lb/>
            tatis in portionis dia-
              <lb/>
            metro conſiſtit.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0121-01" xlink:href="fig-0121-01a">
              <image file="0121-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0121-01"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">HOC eodem prorſus
              <lb/>
            modo demonſtrabitur,
              <lb/>
            quo in libro de centro gra
              <lb/>
            uitatis planorum ab Ar-
              <lb/>
            chimede demonſtratũ eſt,
              <lb/>
            in portione cõtenta recta
              <lb/>
            linea, & </s>
            <s xml:space="preserve">rectanguli coni ſe
              <lb/>
            ctione grauitatis cẽtrum
              <lb/>
            eſſe in diametro portio-
              <lb/>
            nis. </s>
            <s xml:space="preserve">Etita demonſtrari po
              <lb/>
              <anchor type="handwritten" xlink:label="hd-0121-02a" xlink:href="hd-0121-02"/>
            </s>
          </p>
        </div>
      </text>
    </echo>