Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
31 10
32
33 11
34
35 12
36
37 13
38
39 14
40
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
< >
page |< < (16) of 213 > >|
DE IIS QVAE VEH. IN AQVA.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="27">
          <p>
            <s xml:space="preserve">
              <pb o="16" file="0043" n="43" rhead="DE IIS QVAE VEH. IN AQVA."/>
            dratum n o ad quadratum p f. </s>
            <s xml:space="preserve">quadratum igitur n o ad
              <lb/>
            quadratum p f non maiorem proportionem habet, quàm
              <lb/>
            ad quadratum m o. </s>
            <s xml:space="preserve">ex quo eſſicitur, ut p f non ſit minor
              <lb/>
              <anchor type="note" xlink:label="note-0043-01a" xlink:href="note-0043-01"/>
            ipſa o m; </s>
            <s xml:space="preserve">neque p b ipſa o h. </s>
            <s xml:space="preserve">quæ ergo ab h ducitur ad
              <lb/>
              <anchor type="note" xlink:label="note-0043-02a" xlink:href="note-0043-02"/>
            rectos angulos ipſi n o, coibit cum b p inter p & </s>
            <s xml:space="preserve">b. </s>
            <s xml:space="preserve">co-
              <lb/>
            eatin t. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quoniam in rectanguli coniſectione p f eſt æqui
              <lb/>
            diſtans diametro n o; </s>
            <s xml:space="preserve">h t autem ad diametrum perpẽ-
              <lb/>
            dicularis: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">r h æqualis ei, quæ uſque ad axem: </s>
            <s xml:space="preserve">conſtat r t
              <lb/>
            productam ſacere angulos rectos cum ipſa k p ω. </s>
            <s xml:space="preserve">quare
              <lb/>
            & </s>
            <s xml:space="preserve">cum is. </s>
            <s xml:space="preserve">ergo rt perpendicularis eſt ad ſuperſiciem hu
              <lb/>
            midi. </s>
            <s xml:space="preserve">et ſi per b g puncta ducantur æquidiſtantes ipſirt,
              <lb/>
            ad ſuperſiciem humidi perpendicular es erunt. </s>
            <s xml:space="preserve">portio igi
              <lb/>
            tur, qnæ eſt extra humidum, deorſum in humidum feretur
              <lb/>
            ſecundum perpendicularem per b ductam; </s>
            <s xml:space="preserve">quæ uero in-
              <lb/>
            tra humidum ſecundum perpendicularem per g ſurſum
              <lb/>
            feretur: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">non manebit ſolida portio a p o l, ſedintra hu
              <lb/>
            midum mouebitur, donecutique ipſa n o ſecundum per-
              <lb/>
            pendicularem ſiat.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0042-01" xlink:href="fig-0042-01a">
              <image file="0042-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0042-01"/>
            </figure>
            <note position="left" xlink:label="note-0042-01" xlink:href="note-0042-01a" xml:space="preserve">11. quin-
              <lb/>
            ti.</note>
            <note position="left" xlink:label="note-0042-02" xlink:href="note-0042-02a" xml:space="preserve">A</note>
            <note position="left" xlink:label="note-0042-03" xlink:href="note-0042-03a" xml:space="preserve">B</note>
            <note position="right" xlink:label="note-0043-01" xlink:href="note-0043-01a" xml:space="preserve">C</note>
            <note position="right" xlink:label="note-0043-02" xlink:href="note-0043-02a" xml:space="preserve">D</note>
          </div>
        </div>
        <div type="section" level="1" n="28">
          <head xml:space="preserve">COMMENTARIVS.</head>
          <p style="it">
            <s xml:space="preserve">_Quare non maiorem proportionem habet tota portio_
              <lb/>
              <anchor type="note" xlink:label="note-0043-03a" xlink:href="note-0043-03"/>
            _ad eam, quæ eſt extra humidum, quam quadratum n o ad_
              <lb/>
            _quadratum m o]_ cum enim magnitudo portionis in bumidum
              <lb/>
            demerſa ad totam portionem non maiorem proportionem babeat,
              <lb/>
            quàm exceſſus, quo quadratum n o excedit quadratum m o, ad ip-
              <lb/>
            ſum no quadratum: </s>
            <s xml:space="preserve">conuertendo per uigeſimáſextam quinti ele-
              <lb/>
            mentorum ex traditione Campani, tota portio ad magnitudinem de
              <lb/>
            merſam non minorem proportionem babebit, quàm quadratum n o
              <lb/>
            ad exceſſum, quo ipſum quadratum no excedit quadratum m o. </s>
            <s xml:space="preserve">In
              <lb/>
            telligatur portio, quæ extra bumidum, magnitudo prima: </s>
            <s xml:space="preserve">quæ in bu
              <lb/>
            mido demerſa est, ſecunda: </s>
            <s xml:space="preserve">tertia autem magnitudo ſit quadratum
              <lb/>
            mo: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">exceſſus, quo quadratum n o excedit quadratum m o ſit
              <lb/>
            quarta. </s>
            <s xml:space="preserve">ex his igitur magnitudinibus, primæ & </s>
            <s xml:space="preserve">ſecundæ ad ſecun-</s>
          </p>
        </div>
      </text>
    </echo>