Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
< >
page |< < of 213 > >|
ARCHIMEDIS
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="57">
          <p>
            <s xml:space="preserve">
              <pb file="0100" n="100" rhead="ARCHIMEDIS"/>
            quædam recta linea g i, ſectionibus a g q l, a x d interiecta,
              <lb/>
            & </s>
            <s xml:space="preserve">ipſi b d æquidiſtans; </s>
            <s xml:space="preserve">quæ mediam coni ſectionem in pun
              <lb/>
            cto h, & </s>
            <s xml:space="preserve">rectam
              <lb/>
              <anchor type="figure" xlink:label="fig-0100-01a" xlink:href="fig-0100-01"/>
            lineam r y in y
              <lb/>
            ſecet. </s>
            <s xml:space="preserve">demonſtra
              <lb/>
            bitur g h dupla
              <lb/>
            h i, quemadmo-
              <lb/>
            dum demonſtra
              <lb/>
            ta eſt o g ipſius
              <lb/>
            g x dupla. </s>
            <s xml:space="preserve">duca-
              <lb/>
            tur poſtea g ω cõ
              <lb/>
            tingens a g q l ſe
              <lb/>
            ctioneming: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            g c ad b d perpé
              <lb/>
            dicularis: </s>
            <s xml:space="preserve">iun-
              <lb/>
            ctaq; </s>
            <s xml:space="preserve">ai produ-
              <lb/>
            catur ad q. </s>
            <s xml:space="preserve">erit
              <lb/>
            ergo a i æqualis
              <lb/>
            i q: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">a q ipſi g ω
              <lb/>
            æquidiſtans. </s>
            <s xml:space="preserve">Demonſtrandũ eſt portionẽ in humidũ demiſ
              <lb/>
            fam, inclinatamq; </s>
            <s xml:space="preserve">adeo, ut baſis ipſius non cõtingat humi-
              <lb/>
            dũ, conſiſtere inclinatã ita, ut axis cum ſuperficie humidi
              <lb/>
            angulum faciat minorem angulo φ: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">baſis humidi ſuper-
              <lb/>
            ficiem nullo modo contingat. </s>
            <s xml:space="preserve">Demittatur enim in humi-
              <lb/>
            dum; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">conſiſtat ita, ut baſis ipſius in uno puncto contin-
              <lb/>
            gat ſuperficiem humidi. </s>
            <s xml:space="preserve">ſecta autem portione per axem,
              <lb/>
            plano ad humidi ſuperficiem recto, ſit portionis ſectio a n
              <lb/>
            z l rectanguli coni ſectio: </s>
            <s xml:space="preserve">ſuperficiei humidi a z: </s>
            <s xml:space="preserve">axis autẽ
              <lb/>
            portionis, & </s>
            <s xml:space="preserve">ſectionis diameter b d: </s>
            <s xml:space="preserve">ſeceturq; </s>
            <s xml:space="preserve">b d in pun-
              <lb/>
            ctis _K_ r, ut ſuperius dictum eſt: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ducatur n f quidem ipſi
              <lb/>
            a z æquidiſtans, & </s>
            <s xml:space="preserve">contingens coni ſectionem in pũcto n;
              <lb/>
            </s>
            <s xml:space="preserve">n t uero æquidiſtans ipſi b d: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">n s ad eandem perpendi-
              <lb/>
            cularis. </s>
            <s xml:space="preserve">Quoniam igitur portio ad humidum in grauitate,
              <lb/>
            cam habet proportionem, quam quadratum, quod fit à χ</s>
          </p>
        </div>
      </text>
    </echo>