Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
< >
page |< < (7) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="68">
          <p>
            <s xml:space="preserve">
              <pb o="7" file="0125" n="125" rhead="DE CENTRO GRAVIT. SOLID."/>
            metrum habens e d. </s>
            <s xml:space="preserve">Quoniam igitur circuli uel ellipſis
              <lb/>
            a e c b grauitatis centrum eſt in diametro b e, & </s>
            <s xml:space="preserve">portio-
              <lb/>
            nis a e c centrum in linea e d: </s>
            <s xml:space="preserve">reliquæ portionis, uidelicet
              <lb/>
            a b c centrum grauitatis in ipſa b d conſiſtat neceſſe eſt, ex
              <lb/>
            octaua propoſitione eiuſdem.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
        <div type="section" level="1" n="69">
          <head xml:space="preserve">THEOREMA V. PROPOSITIO V.</head>
          <p>
            <s xml:space="preserve">SI priſma ſecetur plano oppoſitis planis æqui
              <lb/>
            diſtante, ſectio erit figura æqualis & </s>
            <s xml:space="preserve">ſimilis ei,
              <lb/>
            quæ eſt oppoſitorum planorum, centrum graui
              <lb/>
            tatis in axe habens.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Sit priſma, in quo plana oppoſita ſint triangula a b c,
              <lb/>
            d e f; </s>
            <s xml:space="preserve">axis g h: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſecetur plano iam dictis planis æquidiſtã
              <lb/>
            te; </s>
            <s xml:space="preserve">quod faciat ſectionem
              <emph style="sc">K</emph>
            l m; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">axi in pũcto n occurrat.
              <lb/>
            </s>
            <s xml:space="preserve">Dico _k_ l m triangulum æquale eſſe, & </s>
            <s xml:space="preserve">ſimile triangulis a b c
              <lb/>
            d e f; </s>
            <s xml:space="preserve">atque eius grauitatis centrum eſſe punctum n. </s>
            <s xml:space="preserve">Quo-
              <lb/>
            niam enim plana a b c
              <lb/>
              <anchor type="figure" xlink:label="fig-0125-01a" xlink:href="fig-0125-01"/>
            K l m æquidiſtantia ſecã
              <lb/>
              <anchor type="note" xlink:label="note-0125-01a" xlink:href="note-0125-01"/>
            tur a plano a e; </s>
            <s xml:space="preserve">rectæ li-
              <lb/>
            neæ a b, K l, quæ ſunt ip
              <lb/>
            ſorum cõmunes ſectio-
              <lb/>
            nes inter ſe ſe æquidi-
              <lb/>
            ſtant. </s>
            <s xml:space="preserve">Sed æquidiſtant
              <lb/>
            a d, b e; </s>
            <s xml:space="preserve">cum a e ſit para
              <lb/>
            lelogrammum, ex priſ-
              <lb/>
            matis diffinitione. </s>
            <s xml:space="preserve">ergo
              <lb/>
            & </s>
            <s xml:space="preserve">al parallelogrammũ
              <lb/>
            erit; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">propterea linea
              <lb/>
              <anchor type="note" xlink:label="note-0125-02a" xlink:href="note-0125-02"/>
            _k_l, ipſi a b æqualis. </s>
            <s xml:space="preserve">Si-
              <lb/>
            militer demonſtrabitur
              <lb/>
            l m æquidiſtans, & </s>
            <s xml:space="preserve">æqua
              <lb/>
            lis b c; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">m
              <emph style="sc">K</emph>
            ipſi c a.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0125-01" xlink:href="fig-0125-01a">
              <image file="0125-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0125-01"/>
            </figure>
            <note position="right" xlink:label="note-0125-01" xlink:href="note-0125-01a" xml:space="preserve">16. unde-
              <lb/>
            cimi.</note>
            <note position="right" xlink:label="note-0125-02" xlink:href="note-0125-02a" xml:space="preserve">34. prim@</note>
          </div>
        </div>
      </text>
    </echo>