Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[1. Figure]
[2. Figure]
[3. Figure]
[4. Figure]
[5. Figure]
[6. Figure]
[7. Figure]
[8. Figure]
[9. Figure]
[10. Figure]
[11. Figure]
[12. Figure]
[13. Figure]
[14. Figure]
[15. Figure]
[16. Figure]
[17. Figure]
[18. Figure]
[19. Figure]
[20. Figure]
[21. Figure]
[22. Figure]
[23. Figure]
[24. Figure]
[25. Figure]
[26. Figure]
[27. Figure]
[28. Figure]
[29. Figure]
[30. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000090">
                <pb pagenum="17" xlink:href="010/01/025.jpg"/>
                <arrow.to.target n="marg17"/>
                <lb/>
              A, B, C, D, E, & F, H, I, K, L, quæ centra grauitatum̨
                <lb/>
              partium aquæ eſſe intelligantur vt prius, & ductis ad
                <lb/>
              horizontalem perpendicularibus AG, BV, CN, DO,
                <lb/>
              FM, H3, &c. </s>
              <s id="s.000091">pariterque coniunctis rectis DK, CI,
                <lb/>
              BH. quia anguli ad L, E æquales ſunt in iſoſcele, &
                <lb/>
              ſunt quoque anguli recti O & T, & hypothenuſæ DE,
                <lb/>
              KL ſunt inter ſe æquales, ergo in ſimilibus triangulis
                <lb/>
              DOE, & KTL latera DO, KT æqualia erunt & recta
                <lb/>
              OE æqualis erit TL, & addita communi TE erit LE
                <lb/>
              æqualis OT quæ
                <expan abbr="">non</expan>
              minus quàm DK biſſecta erit in
                <lb/>
              puncto Z, propter æquidiſtantiam & æqualitatem la­
                <lb/>
              terum DO, & TK. ſimiliter reliquæ rectæ lineæ NY
                <lb/>
              & CI æquales erunt prioribus, & biſſectæ in puncto
                <lb/>
              P, idemque de reliquis
                <expan abbr="dicendũ">dicendum</expan>
              eſt. </s>
              <s id="s.000092">& quia canales,
                <lb/>
              & moles aqueæ in eis contentæ AB, & FH, æquales
                <lb/>
              ſunt, ergo BFH æqualis eſt AF; fiat iam HB ad BQ,
                <lb/>
              vt BFH ad FH, vel potius vt FA ad AB: quare ſemiſ­
                <lb/>
              ſes antecedentium ad eaſdem conſequentes in
                <expan abbr="eadẽ">eadem</expan>
                <lb/>
              ratione erunt, nempè vt EA ad AB, ita erit XB ad B
                <lb/>
              Q, & per conuerſionem rationis EA ad EB ſeu AG
                <lb/>
              ad BV, vel GE ad EV, & tandem vt duplum GM ad
                <lb/>
              duplum MN erit vt BX ad XQ, ſeu vt VX ad XN,
                <lb/>
              vel vt BV ad QN. igitur erunt tres continuæ propor­
                <lb/>
              tionales AG, BV, & QN in eadem ratione quam ha­
                <lb/>
              bet MG ad MN, quare vt quadratum MG ad quadra­
                <lb/>
              tum MN, ita erit longitudine AG ad QN ideoquę
                <lb/>
              duo puncta A & Q in parabola erunt. </s>
            </p>
            <p type="margin">
              <s id="s.000093">
                <margin.target id="marg17"/>
              Cap. 2. dę
                <lb/>
              momentis
                <lb/>
              grauium in
                <lb/>
              fluido inna­
                <lb/>
              tantium</s>
            </p>
            <p type="main">
              <s id="s.000094">Conſtat ergo quòd ſi brachia ſiphonis perpendicu­
                <lb/>
              laria fuerint ad horizontem, ſiuè ambo fuerint eiuſ-</s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>