Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[1. Figure]
[2. Figure]
[3. Figure]
[4. Figure]
[5. Figure]
[6. Figure]
[7. Figure]
[8. Figure]
[9. Figure]
[10. Figure]
[11. Figure]
[12. Figure]
[13. Figure]
[14. Figure]
[15. Figure]
[16. Figure]
[17. Figure]
[18. Figure]
[19. Figure]
[20. Figure]
[21. Figure]
[22. Figure]
[23. Figure]
[24. Figure]
[25. Figure]
[26. Figure]
[27. Figure]
[28. Figure]
[29. Figure]
[30. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <pb pagenum="20" xlink:href="010/01/028.jpg"/>
            <p type="main">
              <s id="s.000106">
                <arrow.to.target n="marg20"/>
                <lb/>
              ad M, ſuntque latera AK & BL æqualia interſę
                <lb/>
              ergo ſe mutuò bifariam ſecabunt rectæ coniungentes
                <lb/>
              AB, & KL in eodem puncto G; idemque continget
                <lb/>
              translatis ponderibus in N, & O, & ideo punctum G
                <lb/>
              erit centrum, ſeu ſtabile
                <expan abbr="fulcimentũ">fulcimentum</expan>
              libræ AB quo­
                <lb/>
              modolibet reuolutæ: ducatur tandem per I recta li­
                <lb/>
              nea IP parallela funibus ſecans libras KL, & NO iņ
                <lb/>
              punctis M, & P patet libras in eadem proportione re­
                <lb/>
              ciproca ſecari in punctis I, M, P, quam habent oppoſi­
                <lb/>
              ta pondera proindeque eadem puncta erunt centrą
                <lb/>
              grauitatum, earumdem librarum cum ponderibus ap­
                <lb/>
              penſis; quapropter licet minus pondus B aſcendat per
                <lb/>
              BLO, tamen ambo pondera A, & B in communi
                <expan abbr="cẽ-tro">cen­
                  <lb/>
                tro</expan>
              grauitatis eorum I ſuſpenſa circa centrum
                <expan abbr="firmũ">firmum</expan>
                <lb/>
              G, & in extremo fune-penduli GI deſcendunt noņ
                <lb/>
              circulari, ſed directo motu perpendiculari ad hori­
                <lb/>
              zontem ab I per M & P, quod fuerat oſtendendum. </s>
            </p>
            <p type="margin">
              <s id="s.000107">
                <margin.target id="marg20"/>
              Cap. 2. de
                <lb/>
              momentis
                <lb/>
              grauium in
                <lb/>
              fluido inna­
                <lb/>
              tantium.</s>
            </p>
            <p type="main">
              <s id="s.000108">
                <emph type="center"/>
              PROP. VII.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000109">
                <emph type="center"/>
                <emph type="italics"/>
              Id ipſum osten ditur, cùm pondera in peripherijs inæqua­
                <lb/>
              libus, & concentricis eiuſdem trochleæ reuoluuntur.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000110">SIt trochlea CDE circa axim F conuertibilis, & in
                <lb/>
              ea ſit alia concentrica circumferentia RSQ, &
                <lb/>
              funi SQB alligetur pondus B, alij verò funi DEA alli­
                <lb/>
              getur pondus A
                <expan abbr="ſintq;">ſintque</expan>
              funes nullius ponderis; oſten­
                <lb/>
              detur, vt in præcedenti, funes EA, & BQ eſſe interſe
                <lb/>
              parallelos; poſtea
                <expan abbr="coniũgatur">coniungatur</expan>
              recta AB, atque vt
                <expan abbr="põ-dus">pon­
                  <lb/>
                dus</expan>
              A ad B ita reciprocè fiat diſtantia BI ad IA; patet </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>