Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[1. Figure]
[2. Figure]
[3. Figure]
[4. Figure]
[5. Figure]
[6. Figure]
[7. Figure]
[8. Figure]
[9. Figure]
[10. Figure]
[11. Figure]
[12. Figure]
[13. Figure]
[14. Figure]
[15. Figure]
[16. Figure]
[17. Figure]
[18. Figure]
[19. Figure]
[20. Figure]
[21. Figure]
[22. Figure]
[23. Figure]
[24. Figure]
[25. Figure]
[26. Figure]
[27. Figure]
[28. Figure]
[29. Figure]
[30. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000204">
                <pb pagenum="45" xlink:href="010/01/053.jpg"/>
                <arrow.to.target n="marg46"/>
                <lb/>
              cet exceſſus quo pondus eius abſolutum ſuperat gra­
                <lb/>
              uitatem aquæ eiuſdem molis; quapropter verum
                <expan abbr="">non</expan>
                <lb/>
              eſt aquam C in ipſamet aqua conſtitutam, nullam
                <expan abbr="cõ-preſſionem">con­
                  <lb/>
                preſſionem</expan>
              , aut grauitatem exercere. </s>
            </p>
            <p type="margin">
              <s id="s.000205">
                <margin.target id="marg46"/>
              Cap. 3. flui­
                <lb/>
              dum in ſuo
                <lb/>
              toto quie­
                <lb/>
              ſcens ponde­
                <lb/>
              rat.</s>
            </p>
            <p type="main">
              <s id="s.000206">
                <emph type="center"/>
              PROP. XVII.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000207">
                <emph type="center"/>
                <emph type="italics"/>
              Idipſum alia ratione demonſtrare.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000208">VAs RO repleatur aqua, in eaque immergatur
                <lb/>
              pila ferrea BA quæ filo aliquo DA ſuſtineatur
                <lb/>
              ne ad fundum vaſis deſcendat. </s>
              <s id="s.000209">Manifeſtum eſt
                <expan abbr="potẽ-tiam">poten­
                  <lb/>
                tiam</expan>
              D filum, & pilam retinentem æquari ei graui­
                <lb/>
              tati quam ipſa pila in aqua exercet, & quia in vaſe
                <lb/>
              aqueo RO deficit præcisè tanta aquæ quantitas,
                <expan abbr="quã-tum">quan­
                  <lb/>
                tum</expan>
              eſt ſpatium, quod corpus graue A in ipſa oc­
                <lb/>
              cupat, collocatur verò intra aquam ne dum grauę
                <lb/>
              AB, ſed etiam defectus molis aquæ æqualis eidem̨
                <lb/>
              AB quare ſumma poſitiuę grauitatis AB vnà cum de­
                <lb/>
              fectiuo pondere molis aquæ expulſæ à loco AB, ſci­
                <lb/>
              licet exceſſus ponderis AB ſupra pondus molis aquæ
                <lb/>
              æqualis pilæ AB æqualis erit ponderi quod exercet
                <lb/>
              pila AB in aqua ergò ſi huiuſmodi aquæ moles ex ſui
                <lb/>
              natura nil in aqua ponderat quando tollitur a ſpatio
                <lb/>
              AB moles aquea, quæ ipſum replebat reuerà tollitur
                <lb/>
              res non grauis, & quæ nil omninò ponderat; igitur à
                <lb/>
              pondere abſoluto ipſius AB, & à ſpatio ab ea occu­
                <lb/>
              pato nihilum, ſeù nulla grauitas ſubtrahitur, quando
                <lb/>
              verò ab abſoluta grauitate IK pilæ AB nil prorſus
                <lb/>
              tollitur, remanet eiuſdem gradus, ac proindè pon-</s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>