Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[31. Figure]
[32. Figure]
[33. Figure]
[34. Figure]
[35. Figure]
[36. Figure]
[37. Figure]
[38. Figure]
[39. Figure]
[40. Figure]
[41. Figure]
[42. Figure]
[43. Figure]
[44. Figure]
[45. Figure]
[46. Figure]
[47. Figure]
[48. Figure]
[49. Figure]
[50. Figure]
[51. Figure]
[52. Figure]
[53. Figure]
[54. Figure]
[55. Figure]
[56. Figure]
[57. Figure]
[58. Figure]
[59. Figure]
[60. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000533">
                <pb pagenum="108" xlink:href="010/01/116.jpg"/>
                <arrow.to.target n="marg129"/>
                <lb/>
              dendo versùs I, eleuabiturque terminus oppoſitus
                <lb/>
              B versùs H, & conatus, ſeù vis, quo libra reuoluitur
                <lb/>
              æqualis erit non differentiæ, & exceſſui ponderis D
                <lb/>
              ſupra vim F, ſed æquabitur aggregato ambarum vir­
                <lb/>
                <figure id="id.010.01.116.1.jpg" xlink:href="010/01/116/1.jpg"/>
                <lb/>
              tutum D, & F. </s>
              <s id="s.000534">Applicetur termi­
                <lb/>
              no B pondus E æquale vi ſursùm
                <lb/>
              impellenti F, pariterque ibidem
                <lb/>
                <expan abbr="ſuſpẽdatur">ſuſpendatur</expan>
              aliud
                <expan abbr="põdus">pondus</expan>
              G æqua­
                <lb/>
              le oppoſito ponderi D, manife­
                <lb/>
              ſtum eſt (amotis, vel coercitis vi­
                <lb/>
              ribus F, & E) quòd
                <expan abbr="põdera">pondera</expan>
              æqua­
                <lb/>
              lia D, & G pendentia à terminis
                <lb/>
              radiorum æqualium eiuſdem li­
                <lb/>
              bræ efficient æquilibrium, & ideò
                <lb/>
                <arrow.to.target n="marg130"/>
                <lb/>
              libra quieſcet. </s>
              <s id="s.000535">Præterea quia pondus E æquatur vi
                <lb/>
              contrariæ ſursùm trahenti F, & ambæ applicantur
                <lb/>
              eidem termino B libræ AB (ab æqualibus ponderi­
                <lb/>
                <arrow.to.target n="marg131"/>
                <lb/>
              bus D, & G æquilibratæ) igitur duo pondera ſimùl
                <lb/>
              ſumpta G, & E libram impellunt contrario niſu, ſci­
                <lb/>
              licet à B verſus I, & præcisè adæquant conatum pon­
                <lb/>
              deris D, & vim trahentem F, quæ ambo deprimere
                <lb/>
              poſſunt terminum libræ A versùs I ſubleuando ter­
                <lb/>
              minum B versùs H. </s>
              <s id="s.000536">Ergo duæ vires D, & F ſimùl
                <expan abbr="sũp-tæ">sump­
                  <lb/>
                tæ</expan>
              (amotis ponderibus G, & E) determinant vim,
                <lb/>
              ſeù conatum, quo libra reuolui debet ab A, versùs I. </s>
            </p>
            <p type="margin">
              <s id="s.000537">
                <margin.target id="marg129"/>
              Cap. 4. poſi­
                <lb/>
              tiuam leui­
                <lb/>
              tatem noņ
                <lb/>
              dari.</s>
            </p>
            <p type="margin">
              <s id="s.000538">
                <margin.target id="marg130"/>
              Pr. 47.</s>
            </p>
            <p type="margin">
              <s id="s.000539">
                <margin.target id="marg131"/>
              Pr. 46.</s>
            </p>
            <p type="main">
              <s id="s.000540">Et hìc animaduertendum eſt, quòd duæ vires D,
                <lb/>
              & F, quæ reuerà contrariæ ſunt inter ſe (
                <expan abbr="">cum</expan>
              illa deor­
                <lb/>
              sùm comprimat, hæc verò ſursùm trahat) non ſibi
                <lb/>
              mutuò opponuntur, nec vna earum alteriùs motum̨ </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>