Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[31. Figure]
[32. Figure]
[33. Figure]
[34. Figure]
[35. Figure]
[36. Figure]
[37. Figure]
[38. Figure]
[39. Figure]
[40. Figure]
[41. Figure]
[42. Figure]
[43. Figure]
[44. Figure]
[45. Figure]
[46. Figure]
[47. Figure]
[48. Figure]
[49. Figure]
[50. Figure]
[51. Figure]
[52. Figure]
[53. Figure]
[54. Figure]
[55. Figure]
[56. Figure]
[57. Figure]
[58. Figure]
[59. Figure]
[60. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000546">
                <pb pagenum="110" xlink:href="010/01/118.jpg"/>
                <arrow.to.target n="marg134"/>
                <lb/>
              G,
                <expan abbr="tũc">tunc</expan>
              manifeſtum eſt, terminum
                <lb/>
                <figure id="id.010.01.118.1.jpg" xlink:href="010/01/118/1.jpg"/>
                <lb/>
              A eleuari ſursùm versùs Hab ex­
                <lb/>
              ceſſu quo vis M ſuperat faculta­
                <lb/>
              tem motiuam F, & è contrà op­
                <lb/>
              poſitus libræ terminus B depri­
                <lb/>
                <arrow.to.target n="marg135"/>
                <lb/>
              metur deorsùm versùs I ab ex­
                <lb/>
              ceſſu quo pondus G ſuperat vim
                <lb/>
              grauitatis D; & quia prædicti
                <lb/>
              duo impulſus differentiales con­
                <lb/>
              trarij ſunt, vnus quidèm ſursùm̨,
                <lb/>
              alter verò deorsùm,
                <expan abbr="applicãturque">applicanturque</expan>
              terminis oppoſi­
                <lb/>
              tis eiuſdem libræ; igitur ſe mutuo adiuuant promo­
                <lb/>
              uenturque, & proindè conatus, vis, atque impetus,
                <lb/>
              quo vniuerſa libra reuoluitur, æqualis erit aggrega­
                <lb/>
              to prædictarum differentiarum. </s>
            </p>
            <p type="margin">
              <s id="s.000547">
                <margin.target id="marg134"/>
              Cap. 4. poſi­
                <lb/>
              tiuam leui­
                <lb/>
              tatem noņ
                <lb/>
              dari.</s>
            </p>
            <p type="margin">
              <s id="s.000548">
                <margin.target id="marg135"/>
              Prop. 49.</s>
            </p>
            <p type="main">
              <s id="s.000549">
                <emph type="center"/>
              PROP. LI.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000550">
                <emph type="center"/>
                <emph type="italics"/>
              Vis motiua, qua ſolidum grauius ſpecie, quàm fluidum, de­
                <lb/>
              ſcendit, æqualis est differentiæ ponderis ſolidi ſupra
                <lb/>
              pondus fluidi ei æqualis mole.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <figure id="id.010.01.118.2.jpg" xlink:href="010/01/118/2.jpg"/>
            <p type="main">
              <s id="s.000551">HIs declaratis intelligatur
                <lb/>
              vas RGS aqua plenum, in
                <lb/>
                <expan abbr="eoq;">eoque</expan>
              immergatur corpus aliquod
                <lb/>
              graue durum, ac conſiſtens DE,
                <lb/>
              quod grauius ſit aqua collaterali
                <lb/>
              F patet ex dictis prop. 9. & ex
                <lb/>
              Archimede, duo pondera DE, & F collocari in libra
                <lb/>
              quadam imaginaria, & perpetua AB in qua exceſſus </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>