Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[31. Figure]
[32. Figure]
[33. Figure]
[34. Figure]
[35. Figure]
[36. Figure]
[37. Figure]
[38. Figure]
[39. Figure]
[40. Figure]
[41. Figure]
[42. Figure]
[43. Figure]
[44. Figure]
[45. Figure]
[46. Figure]
[47. Figure]
[48. Figure]
[49. Figure]
[50. Figure]
[51. Figure]
[52. Figure]
[53. Figure]
[54. Figure]
[55. Figure]
[56. Figure]
[57. Figure]
[58. Figure]
[59. Figure]
[60. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000558">
                <pb pagenum="112" xlink:href="010/01/120.jpg"/>
                <arrow.to.target n="marg137"/>
                <lb/>
              ueri, at fluidum collaterale D, quòd ſit hydrargyrum
                <lb/>
              ſupponatur deorsùm tantummodò vim exercere, vt
                <lb/>
              exigit maxima eius grauitas, nec prorsùs ſursùm im­
                <lb/>
                <figure id="id.010.01.120.1.jpg" xlink:href="010/01/120/1.jpg"/>
                <lb/>
              pellere, tunc quoque libra, ſeù
                <lb/>
              rota perpetua efformabitur iņ
                <lb/>
              qua ſemper terminus B trahetur
                <lb/>
              ſursùm à poſitiua leuitate ipſius
                <lb/>
              ligni F aſcendetque versùs R,
                <lb/>
              terminus verò oppoſitus depri­
                <lb/>
              metur ab A versùs H vt naturą
                <lb/>
              grauitatis exigit, & quia hi duo motus, & conatus in
                <lb/>
              oppoſitis terminis libræ
                <expan abbr="cõtrarij">contrarij</expan>
              ſunt, ergò viciſſim
                <lb/>
              ſe non deſtruunt, nec contrariantur, ſed ſe mutuò fa­
                <lb/>
              uent, & adiuuant. </s>
              <s id="s.000559">igitur conatus, & impetus quo re­
                <lb/>
              uoluitur iam dicta libra, ſcilicèt quo lignum F aſcen­
                <lb/>
              dit à fundo mercurij æqualis erit non differentiæ, ſed
                <lb/>
              aggregato ex vi leuitatis F, & ex facultate ponderis
                <lb/>
              mercurij D. </s>
            </p>
            <p type="margin">
              <s id="s.000560">
                <margin.target id="marg137"/>
              Cap. 4. poſi­
                <lb/>
              tiuam leui­
                <lb/>
              tatem noņ
                <lb/>
              dari.</s>
            </p>
            <p type="main">
              <s id="s.000561">
                <emph type="center"/>
              PROP. LIV.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000562">
                <emph type="center"/>
                <emph type="italics"/>
              Si verò tam ſolidum, quàm fluidum exerceant leuitatem,
                <lb/>
              atque grauitatem, vis motiua, qua vnum eorum ele­
                <lb/>
              uatur æqualis eſt aggregato ex differentia leui­
                <lb/>
              tatum vnà cum differentia grauitatum
                <lb/>
              earum.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000563">TAndèm ſi ſupponamus, quod lignum vim faciat
                <lb/>
              ſursùm vt leue, & etiam eodem tempore gra­
                <lb/>
              uitatem eius natiuam exerceat, pariterque aqua D </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>