Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[31. Figure]
[32. Figure]
[33. Figure]
[34. Figure]
[35. Figure]
[36. Figure]
[37. Figure]
[38. Figure]
[39. Figure]
[40. Figure]
[41. Figure]
[42. Figure]
[43. Figure]
[44. Figure]
[45. Figure]
[46. Figure]
[47. Figure]
[48. Figure]
[49. Figure]
[50. Figure]
[51. Figure]
[52. Figure]
[53. Figure]
[54. Figure]
[55. Figure]
[56. Figure]
[57. Figure]
[58. Figure]
[59. Figure]
[60. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000083">
                <pb pagenum="16" xlink:href="010/01/024.jpg"/>
                <arrow.to.target n="marg16"/>
                <lb/>
              AE ad NQ: ideoque puncta A & Q ſunt in parabolą
                <lb/>
              cuius vertex M. quapropter aqua in prædicto ſiphone
                <lb/>
              dum ad æquilibrium deſcendit mouetur eius centrum
                <lb/>
              grauitatis in linea parabolica; quod fuerat
                <expan abbr="oſtẽdẽdũ">oſtendendum</expan>
              . </s>
            </p>
            <p type="margin">
              <s id="s.000084">
                <margin.target id="marg14"/>
              Cap. 2. de
                <lb/>
              momentis
                <lb/>
              grauium in
                <lb/>
              fluido inna­
                <lb/>
              tantium.</s>
            </p>
            <p type="margin">
              <s id="s.000085">
                <margin.target id="marg15"/>
              Cap. 2. dę
                <lb/>
              momentis
                <lb/>
              grauium in
                <lb/>
              fluido inna­
                <lb/>
              tantium</s>
            </p>
            <p type="margin">
              <s id="s.000086">
                <margin.target id="marg16"/>
              Cap. 2. dę
                <lb/>
              momentis
                <lb/>
              grauium in
                <lb/>
              fluido inna­
                <lb/>
              tantium</s>
            </p>
            <p type="main">
              <s id="s.000087">
                <emph type="center"/>
              PROP. V.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000088">
                <emph type="center"/>
                <emph type="italics"/>
              Ijsdem poſitis ſi canales ſiphonis æquèlati angulum conſti­
                <lb/>
              tuentes æquè ad horizontem inclinati fuerint
                <lb/>
              idipſum demonſtratur.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000089">SI poſtea ſipho inuerſus eiuſdem amplitudinis an­
                <lb/>
              gularis fuerit, vt nimirum ſemiſſes brachiorum
                <lb/>
              AF & FL æquè ſint ad horizontem EL inclinata effi­
                <lb/>
              ciatur què hi
                <lb/>
                <figure id="id.010.01.024.1.jpg" xlink:href="010/01/024/1.jpg"/>
                <lb/>
              ſoſcelium tri
                <lb/>
              angulum EF
                <lb/>
              L & brachij
                <lb/>
              ſupremi qua­
                <lb/>
              drans EA æ­
                <lb/>
              quale ſit FL,
                <lb/>
              ſiue FE. dico
                <lb/>
              denuò quòd
                <lb/>
              aqua totius
                <lb/>
              brachij F2.
                <lb/>
              cuius ſemiſ­
                <lb/>
              ſis eſt AF
                <expan abbr="">dum</expan>
                <lb/>
              fluit per canalem FL4 ſurſum & deſcendit per 2 A;
                <lb/>
              tunc pariter eius centrum grauitatis per parabolam
                <lb/>
              deorſum fertur. </s>
              <s id="s.000090">diuiſis æqualibus partibus in punctis </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>