Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[31. Figure]
[32. Figure]
[33. Figure]
[34. Figure]
[35. Figure]
[36. Figure]
[37. Figure]
[38. Figure]
[39. Figure]
[40. Figure]
[41. Figure]
[42. Figure]
[43. Figure]
[44. Figure]
[45. Figure]
[46. Figure]
[47. Figure]
[48. Figure]
[49. Figure]
[50. Figure]
[51. Figure]
[52. Figure]
[53. Figure]
[54. Figure]
[55. Figure]
[56. Figure]
[57. Figure]
[58. Figure]
[59. Figure]
[60. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000363">
                <pb pagenum="77" xlink:href="010/01/085.jpg"/>
                <arrow.to.target n="marg84"/>
                <lb/>
              quieſcat, ſiue circa eius axim
                <lb/>
                <figure id="id.010.01.085.1.jpg" xlink:href="010/01/085/1.jpg"/>
                <lb/>
              M conuertatur libra ſemper
                <lb/>
              in ſitu horizontali æquilibra­
                <lb/>
              ta perſiſtet. </s>
            </p>
            <p type="margin">
              <s id="s.000364">
                <margin.target id="marg84"/>
              Cap. 3. flui­
                <lb/>
              dum in ſuo
                <lb/>
              toto quie­
                <lb/>
              ſcens pon­
                <lb/>
              derat.</s>
            </p>
            <p type="main">
              <s id="s.000365">Vt verò ratio huius effectus
                <lb/>
              percipiatur, recurrendum eſt
                <lb/>
              ad centri grauitatis definitio­
                <lb/>
              nem, ex qua habetur quòd corpus quodlibet ſuſpen­
                <lb/>
              ſum à centro grauitatis eius quomodocumque reuol­
                <lb/>
              uatur circa centrum, ſemper æquilibrari, & haberę
                <lb/>
              partes æqualium momentorum, vnde infertur, quòd
                <lb/>
              vniuerſa vis, qua corpus aliquod
                <expan abbr="tẽdit">tendit</expan>
              deorsùm, ſci­
                <lb/>
              licet grauitas eius, exercetur in vnico illo puncto,
                <lb/>
              quod centrum grauitatis eius vocatur. </s>
              <s id="s.000366">Hinc deduci­
                <lb/>
              tur, quod ſi rota, ſiuè pila ſuſtineatur ex centro gra­
                <lb/>
              uitatis eius ſiuè quieſcat, ſiuè moueatur, numquam
                <lb/>
              centrum grauitatis ſitum commutabit, aliàs daretur
                <lb/>
              motus perpetuus, qui naturæ legibus repugnat. </s>
            </p>
            <p type="main">
              <s id="s.000367">Similitèr ſi concipiatur fiſtula vitrea inflexa ad
                <lb/>
              modum anuli, vt eſt EFGK, ſitque prædicta fiſtulą
                <lb/>
              plena aqua ſituata perpendiculari­
                <lb/>
                <figure id="id.010.01.085.2.jpg" xlink:href="010/01/085/2.jpg"/>
                <lb/>
              tèr ſuper planum ſubiectum RS à
                <lb/>
              quo fulciatur; habebit profectò
                <expan abbr="cẽ-trum">cen­
                  <lb/>
                trum</expan>
              grauitatis in eius puncto in­
                <lb/>
              termedio N, dum quieſcit aqua iņ
                <lb/>
              prædicto anulo, at ſi reuoluatur vt
                <lb/>
              nimirùm pars EFG deſcendat, reliqua verò GKE
                <lb/>
              ſursùm
                <expan abbr="aſcẽdat">aſcendat</expan>
              , non proindè centrum grauitatis
                <expan abbr="trãſ-feretur">tranſ­
                  <lb/>
                feretur</expan>
              ab N versùs O, ſcilicèt intra ſemicirculum̨ </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>