Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[1. Figure]
[2. Figure]
[3. Figure]
[4. Figure]
[5. Figure]
[6. Figure]
[7. Figure]
[8. Figure]
[9. Figure]
[10. Figure]
[11. Figure]
[12. Figure]
[13. Figure]
[14. Figure]
[15. Figure]
[16. Figure]
[17. Figure]
[18. Figure]
[19. Figure]
[20. Figure]
[21. Figure]
[22. Figure]
[23. Figure]
[24. Figure]
[25. Figure]
[26. Figure]
[27. Figure]
[28. Figure]
[29. Figure]
[30. Figure]
< >
page |< < of 213 > >|
ARCHIMEDIS
angulus b n f œqualis angulo o g f: quòd cum ſit g o perpendi-
29, primicularis ad e f, &
h n ad eandem perpendicularis erit. quod de-
monstrare oportebat.
Et quod in humido eſt ſurſum ſeretur ſecundum per-
Gpendicularem, quæ per b ducta eſtipſi rt æquidiſtans.
]
_Cur hoc quidem ſurſum, illud uero deorſum per lineam perpen-_
_dicularem feratur, diximus ſupra in octauam primi libri buius.
qua_
_re neque in hac, neque in alijs, quæ ſequuntur, eadem iterare neceſſa_
_rium exiſtimauimus._

PROPOSITIO III.

Recta portio conoidis rectanguli quando
axem habuerit minorem, quam ſeſquialterum
eius, quæ uſque ad axem, quamcunque propor-
tionem habens ad humidum in grauitate;
demiſ-
ſa in humidum, ita ut baſis ipſius tota ſit in humi
do;
& poſita inclinata, non manebit inclinata, ſed
ita reſtituetur, ut axis ipſius ſecundum perpendi
cularem fiat.
DEMITTATVR enim aliqua portio in humidum,
qualis dicca eſt:
ſitq; ipſius baſis in humido: & ſecta ipſa
plano per axẽ, recto ad ſuperficiẽ humidi, ſit ſectio a p ol
rectanguli coniſectio:
axis portionis, & ſectionis diame-
ter p f:
ſuperficiei autem humidi ſectio ſit is. Quòd ſi incli
nata iaceat portio, non erit axis ſecundum perpendicula-
rem.
ergo p f cum is angulos rectos non faciet. Itaque
ducatur linea quædã k ω æquidiſtans ipſi is;
contingensq;
ſectionẽ ap ol in o: & ſolidæ quidẽ magnitudinis a p o l
ſit r grauitatis centrum:
ipſius autem i p o s centrum ſit

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index