Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[1. Figure]
[2. Figure]
[3. Figure]
[4. Figure]
[5. Figure]
[6. Figure]
[7. Figure]
[8. Figure]
[9. Figure]
[10. Figure]
[11. Figure]
[12. Figure]
[13. Figure]
[14. Figure]
[15. Figure]
[16. Figure]
[17. Figure]
[18. Figure]
[19. Figure]
[20. Figure]
[21. Figure]
[22. Figure]
[23. Figure]
[24. Figure]
[25. Figure]
[26. Figure]
[27. Figure]
[28. Figure]
[29. Figure]
[30. Figure]
< >
page |< < of 213 > >|
ARCHIMEDIS
_Erit r o minor, quàm, quæ uſque ad axem]_ Ex decima
Epropoſitione quinti libri elementorum.
Linea, quæ uſque ad axem
apud Archimedem, eſt dimidia eius, iuxta quam poſſunt, quæ à ſe-
ctione ducuntur;
ut ex quarta propoſitione libri de conoidibus, &
ſphæroidibus apparet.
cur uero ita appellata ſit, nos in commentarijs
in eam editis tradidimus.
_Quare angulus r p ω acutus erit]_ producatur linea n o ad
Fh, ut ſit r h æqualis ei, quæ uſque ad axem.
ſi igitur à puncto h du-
catur linea ad rectos angulos ipſi n h, conueniet cum f p extra ſe-
ctionem:
ducta enim per o ipſi a l æquidiſtans, extra ſectionem ca
dit ex decima ſepti-
Figure: /permanent/library/4E7V2WGH/figures/0034-01 not scanned
[Figure 20]
ma primi libri coni-
corum.
Itaque con-
ueniat in u.
& quo
niam f p est æqui-
distans diametro;
h u uero ad diame-
trum perpendicula-
ris;
& r h æqualis
ei, quæ uſq;
ad axẽ,
linea à puncto r ad
u ducta angulos re-
ctos faciet cum ea, quæ ſectionem in puncto p contingit, hoc eſt cum
k ω, ut mox demonstrabitur.
quare perpendicularis r t inter p &
ω cadet;
erítque r p ω angulus acutus.
Sit rectanguli coni ſectio, ſeu parabole a b c, cuius
diameter b d:
atque ipſam contingat linea e f in pun-
cto g:
ſumatur autem in diametro b d linea h k æqua-
lis ei, quæ uſque ad axem:
& per g ducta g l, diame-
tro æquidistante, à puncto _k_ ad rectos angulos ipſi b d
ducatur _k_ m, ſecans g l in m.
Dico lineam ab h ad

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index