Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[31. Figure]
[32. Figure]
[33. Figure]
[34. Figure]
[35. Figure]
[36. Figure]
[37. Figure]
[38. Figure]
[39. Figure]
[40. Figure]
[41. Figure]
[42. Figure]
[43. Figure]
[44. Figure]
[45. Figure]
[46. Figure]
[47. Figure]
[48. Figure]
[49. Figure]
[50. Figure]
[51. Figure]
[52. Figure]
[53. Figure]
[54. Figure]
[55. Figure]
[56. Figure]
[57. Figure]
[58. Figure]
[59. Figure]
[60. Figure]
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="62">
          <p>
            <s xml:space="preserve">
              <pb file="0114" n="114" rhead="FED. COMMANDINI"/>
            tes æqueponderantes ipſam diuidet.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">2 Priſmatis, cylindri, & </s>
            <s xml:space="preserve">portionis cylindri axem
              <lb/>
            appello rectam lineam, quæ oppoſitorum plano-
              <lb/>
            rum centra grauitatis coniungit.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">3 Pyramidis, coni, & </s>
            <s xml:space="preserve">portionis coni axem dico li
              <lb/>
            neam, quæ à uertice ad centrum grauitatis baſis
              <lb/>
            perducitur.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">4 Si pyramis, conus, portio coni, uel conoidis ſe-
              <lb/>
            cetur plano baſi æquidiſtante, pars, quæ eſt ad ba-
              <lb/>
            ſim, fruſtum pyramidis, coni, portionis coni, uel
              <lb/>
            conoidis dicetur; </s>
            <s xml:space="preserve">quorum plana æquidiſtantia,
              <lb/>
            quæ opponuntur ſimilia ſunt, & </s>
            <s xml:space="preserve">inæqualia: </s>
            <s xml:space="preserve">axes
              <lb/>
            uero ſunt axium figurarum partes, quæ in ipſis
              <lb/>
            comprehenduntur.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
        <div type="section" level="1" n="63">
          <head xml:space="preserve">PETITIONES.</head>
          <p>
            <s xml:space="preserve">1 Solidarum figurarum ſimilium centra grauita-
              <lb/>
            tis ſimiliter ſunt poſita.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">2 Solidis figuris ſimilibus, & </s>
            <s xml:space="preserve">æqualibus inter ſe
              <lb/>
            aptatis, centra quoque grauitatis ipſarum inter ſe
              <lb/>
            aptata erunt.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
        <div type="section" level="1" n="64">
          <head xml:space="preserve">THEOREMA I. PROPOSITIO I.</head>
          <p>
            <s xml:space="preserve">Omnis figuræ rectilineæ in circulo deſcriptæ,
              <lb/>
            quæ æqualibus lateribus, & </s>
            <s xml:space="preserve">angulis contine-</s>
          </p>
        </div>
      </text>
    </echo>