Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[31. Figure]
[32. Figure]
[33. Figure]
[34. Figure]
[35. Figure]
[36. Figure]
[37. Figure]
[38. Figure]
[39. Figure]
[40. Figure]
[41. Figure]
[42. Figure]
[43. Figure]
[44. Figure]
[45. Figure]
[46. Figure]
[47. Figure]
[48. Figure]
[49. Figure]
[50. Figure]
[51. Figure]
[52. Figure]
[53. Figure]
[54. Figure]
[55. Figure]
[56. Figure]
[57. Figure]
[58. Figure]
[59. Figure]
[60. Figure]
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="71">
          <p>
            <s xml:space="preserve">
              <pb file="0128" n="128" rhead="FED. COMMANDINI"/>
            ergo linea a g continenter in duas partes æquales diui-
              <lb/>
              <anchor type="note" xlink:label="note-0128-01a" xlink:href="note-0128-01"/>
            ſa, relinquetur tãdem pars aliqua n g, quæ minor eritl m.
              <lb/>
            </s>
            <s xml:space="preserve">Vtraque uero linearum a g, g b diuidatur in partes æqua-
              <lb/>
            les ipſi n g: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per puncta diuiſionum plana oppoſitis pla-
              <lb/>
              <anchor type="note" xlink:label="note-0128-02a" xlink:href="note-0128-02"/>
            nis æquidiſtantia ducantur. </s>
            <s xml:space="preserve">erunt ſectiones figuræ æqua-
              <lb/>
            les, ac ſimiles ipſis a c e, b d f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">totum priſma diuiſum erit
              <lb/>
            in priſmata æqualia, & </s>
            <s xml:space="preserve">ſimilia: </s>
            <s xml:space="preserve">quæ cum inter ſe congruãt;
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">grauitatis centra ſibi ipſis congruentia, reſpondentiaq; </s>
            <s xml:space="preserve">
              <lb/>
            habebunt. </s>
            <s xml:space="preserve">Itaq: </s>
            <s xml:space="preserve">
              <lb/>
              <anchor type="figure" xlink:label="fig-0128-01a" xlink:href="fig-0128-01"/>
            ſunt magnitudi-
              <lb/>
            nes quædã æqua-
              <lb/>
            les ipſi n h, & </s>
            <s xml:space="preserve">nu-
              <lb/>
            mero pares, qua-
              <lb/>
            rum centra gra-
              <lb/>
            uitatis in eadẽ re
              <lb/>
            cta linea conſti-
              <lb/>
            tuuntur: </s>
            <s xml:space="preserve">duæ ue-
              <lb/>
            ro mediæ æqua-
              <lb/>
            les ſunt: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quæ ex
              <lb/>
            utraque parte i-
              <lb/>
            pſarum ſimili --
              <lb/>
            ter æquales: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">æ-
              <lb/>
            quales rectæ li-
              <lb/>
            neæ, quæ inter
              <lb/>
            grauitatis centra
              <lb/>
            interiiciuntur.
              <lb/>
            </s>
            <s xml:space="preserve">quare ex corolla-
              <lb/>
            rio quintæ pro-
              <lb/>
            poſitionis primi
              <lb/>
            libri Archimedis
              <lb/>
            de centro graui-
              <lb/>
            tatis planorum; </s>
            <s xml:space="preserve">magnitudinis ex his omnibus compoſitæ
              <lb/>
            centrum grauitatis eſt in medio lineæ, quæ magnitudi-
              <lb/>
            num mediarum centra coniungit. </s>
            <s xml:space="preserve">at qui non ita res ha-</s>
          </p>
        </div>
      </text>
    </echo>