Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[31. Figure]
[32. Figure]
[33. Figure]
[34. Figure]
[35. Figure]
[36. Figure]
[37. Figure]
[38. Figure]
[39. Figure]
[40. Figure]
[41. Figure]
[42. Figure]
[43. Figure]
[44. Figure]
[45. Figure]
[46. Figure]
[47. Figure]
[48. Figure]
[49. Figure]
[50. Figure]
[51. Figure]
[52. Figure]
[53. Figure]
[54. Figure]
[55. Figure]
[56. Figure]
[57. Figure]
[58. Figure]
[59. Figure]
[60. Figure]
< >
page |< < (12) of 213 > >|
DE IIS QVAE VEH. IN AQVA.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="23">
          <p style="it">
            <s xml:space="preserve">
              <pb o="12" file="0035" n="35" rhead="DE IIS QVAE VEH. IN AQVA."/>
            m productam per pendicularem eſſe ad ipſam e f, quam
              <lb/>
            quidem ſecet in n.</s>
            <s xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:space="preserve">
              <emph style="sc">D_vcatvr_</emph>
            enim à puncto g linea g o ad rectos angulos ipſi
              <lb/>
            e f, diametrum in o ſecans: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">rurſus ab eodem puncto ducatur g p
              <lb/>
            ad diametrum perpendicularis: </s>
            <s xml:space="preserve">ſecet autem ipſa diameter producta
              <lb/>
            lineã e f in q. </s>
            <s xml:space="preserve">erit p b ipſi b q æqualis, ex trigeſimaquinta primi co
              <lb/>
            nicorum: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">g p pro-
              <lb/>
              <anchor type="note" xlink:label="note-0035-01a" xlink:href="note-0035-01"/>
              <anchor type="figure" xlink:label="fig-0035-01a" xlink:href="fig-0035-01"/>
            portionalis ĩter q p, p o
              <lb/>
            quare quadratũ g p re-
              <lb/>
              <anchor type="note" xlink:label="note-0035-02a" xlink:href="note-0035-02"/>
            ctangulo o p q æquale
              <lb/>
            erit: </s>
            <s xml:space="preserve">ſed etiã æquale est
              <lb/>
            rectangulo cõtento ipſa
              <lb/>
            p b, & </s>
            <s xml:space="preserve">linea, iuxta quã
              <lb/>
            poſſunt, quæ à ſectione
              <lb/>
            ad diametrũ ordinatim
              <lb/>
            ducuntur, ex undecima
              <lb/>
            primi conicorum. </s>
            <s xml:space="preserve">ergo
              <lb/>
              <anchor type="note" xlink:label="note-0035-03a" xlink:href="note-0035-03"/>
            quæ est proportio q p
              <lb/>
            ad p b eadem est lineæ,
              <lb/>
            iuxta quã poſſunt, quæ
              <lb/>
            à ſectione ducũtur ad ip
              <lb/>
            ſam p o: </s>
            <s xml:space="preserve">est autem q p
              <lb/>
            dupla p b: </s>
            <s xml:space="preserve">cũ ſint p b,
              <lb/>
            b q æquales, ut dictum
              <lb/>
            est. </s>
            <s xml:space="preserve">Linea igitur iuxta
              <lb/>
            quam poſſunt, quæ à ſe-
              <lb/>
            ctione ducuntur ipſi-
              <lb/>
            us p o dupla erit: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            propterea p o æqualis
              <lb/>
            ei, quæ uſque ad axem,
              <lb/>
            uidelicet ipſi k h: </s>
            <s xml:space="preserve">ſed eſt p g æqualis k m; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">angulus o p g angu-
              <lb/>
              <anchor type="note" xlink:label="note-0035-04a" xlink:href="note-0035-04"/>
            lo h k m; </s>
            <s xml:space="preserve">quòd uterque rectus. </s>
            <s xml:space="preserve">quare & </s>
            <s xml:space="preserve">o g ipſi h m est œqualis:
              <lb/>
            </s>
            <s xml:space="preserve">
              <anchor type="note" xlink:label="note-0035-05a" xlink:href="note-0035-05"/>
            & </s>
            <s xml:space="preserve">angulus p o g angulo _k_ h m. </s>
            <s xml:space="preserve">æquidistantes igitur ſunt o g, h n:
              <lb/>
            </s>
            <s xml:space="preserve">
              <anchor type="note" xlink:label="note-0035-06a" xlink:href="note-0035-06"/>
            </s>
          </p>
        </div>
      </text>
    </echo>