Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[1. Figure]
[2. Figure]
[3. Figure]
[4. Figure]
[5. Figure]
[6. Figure]
[7. Figure]
[8. Figure]
[9. Figure]
[10. Figure]
[11. Figure]
[12. Figure]
[13. Figure]
[14. Figure]
[15. Figure]
[16. Figure]
[17. Figure]
[18. Figure]
[19. Figure]
[20. Figure]
[21. Figure]
[22. Figure]
[23. Figure]
[24. Figure]
[25. Figure]
[26. Figure]
[27. Figure]
[28. Figure]
[29. Figure]
[30. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <pb pagenum="5" xlink:href="010/01/013.jpg"/>
            <p type="main">
              <s id="s.000050">
                <arrow.to.target n="marg5"/>
                <lb/>
              percipitur quomodo à naturali operatione, deſcen­
                <lb/>
              ſus nempè deorſum, produci debeat operatio
                <expan abbr="quædã">quædam</expan>
                <lb/>
              contraria, aſcenſus nimirum alterius partis eiuſdem
                <lb/>
              fluidi ſcilicet recedendo a centro telluris. </s>
              <s id="s.000051">erit igitur
                <lb/>
              operæpretium perſpicuè oſtendere veritatem præ­
                <lb/>
              dictæ operationis, eamque deducere ex principijs
                <lb/>
              magis notis, & euidentibus. </s>
            </p>
            <p type="margin">
              <s id="s.000052">
                <margin.target id="marg5"/>
              Cap. 2. dę
                <lb/>
              momentis
                <lb/>
              grauium in
                <lb/>
              fluido inna­
                <lb/>
              tantium.</s>
            </p>
            <p type="main">
              <s id="s.000053">
                <emph type="center"/>
              PROPOSITIO I.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000054">
                <emph type="center"/>
                <emph type="italics"/>
              Grauis ſuſpenſi non ex centro ſuæ grauitatis vna eius pars
                <lb/>
              ſurſum aſcendit quiæ integrum graue
                <expan abbr="deorsũ">deorsum</expan>
              deſcendit.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000055">Sit graue AB extenſum, vel compoſitum ex dua­
                <lb/>
              bus partibus in extremitatibus eiuſdem libræ
                <lb/>
              horizontalis AB diſpoſitis, & commune centrum gra­
                <lb/>
              uitatis earum ſit D. ſuſti­
                <lb/>
                <figure id="id.010.01.013.1.jpg" xlink:href="010/01/013/1.jpg"/>
                <lb/>
              neatur poſtea, fulciatur­
                <lb/>
              que tota libra ex puncto
                <lb/>
              C remoto à centro graui­
                <lb/>
              tatis D. dico quòd pars
                <lb/>
              eius oppoſita B ſurſum̨
                <lb/>
              aſcendet per arcum BF,
                <lb/>
              hac ſolummodo de cauſą
                <lb/>
              quia integrum graue AB magis, quàm prius ad cen­
                <lb/>
              trum terræ accedit. </s>
              <s id="s.000056">quia duæ partes graues A & B
                <lb/>
              exercent ſuam grauitatem & conatum compreſſiuum
                <lb/>
              in centro communi earum grauitatum D; eſt que
                <lb/>
              prædictum centrum D remotum à fulcimento ſtabili
                <lb/>
              C, igitur efformabitur veluti fune-pendulum CD </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>