Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[1. Figure]
[2. Figure]
[3. Figure]
[4. Figure]
[5. Figure]
[6. Figure]
[7. Figure]
[8. Figure]
[9. Figure]
[10. Figure]
[11. Figure]
[12. Figure]
[13. Figure]
[14. Figure]
[15. Figure]
[16. Figure]
[17. Figure]
[18. Figure]
[19. Figure]
[20. Figure]
[21. Figure]
[22. Figure]
[23. Figure]
[24. Figure]
[25. Figure]
[26. Figure]
[27. Figure]
[28. Figure]
[29. Figure]
[30. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000540">
                <pb pagenum="109" xlink:href="010/01/117.jpg"/>
                <arrow.to.target n="marg132"/>
                <lb/>
              impedit, ſed vna promouet, adiuuat, & auget cona­
                <lb/>
              tum, vim, & impetum alterius; & hoc accidit
                <expan abbr="quianõ">quia non</expan>
                <lb/>
              applicantur ambæ eidem termino A libræ, ſed ter­
                <lb/>
              minis oppoſitis A, & B, qui iuxtà libræ, & rotæ pro­
                <lb/>
              prietatem, & naturam debent moueri motibus con­
                <lb/>
                <arrow.to.target n="marg133"/>
                <lb/>
              trarijs, ſcilicèt A per arcum AI, & B per arcum BH.
                <lb/>
              igitur impulſus ponderis D deorsùm, & tractio facta
                <lb/>
              àvi F ſursùm conueniunt, & ſe mutuò adiuuant, &
                <lb/>
              augent, vt ab vtriſque reuolutio libræ efficiatur, quæ
                <lb/>
              ad eaſdem partes impellitur ab eiſdem viribus con­
                <lb/>
              trarijs. </s>
              <s id="s.000541">ceſſet igitur admiratio quare duæ vires con­
                <lb/>
              trariæ in libra ſe mutuò non
                <expan abbr="deſtruãt">deſtruant</expan>
              , ſed potiùs mu­
                <lb/>
              tuo ſe adiuuent, ita vt ex vtriſque reſultet vna vis
                <expan abbr="cõ-poſita">con­
                  <lb/>
                poſita</expan>
              , à qua libra reuoluitur. </s>
            </p>
            <p type="margin">
              <s id="s.000542">
                <margin.target id="marg132"/>
              Cap. 4. poſi­
                <lb/>
              tiuam leui­
                <lb/>
              tatem noņ
                <lb/>
              dari.</s>
            </p>
            <p type="margin">
              <s id="s.000543">
                <margin.target id="marg133"/>
              Prop. 45.</s>
            </p>
            <p type="main">
              <s id="s.000544">
                <emph type="center"/>
              PROP. L.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000545">
                <emph type="center"/>
                <emph type="italics"/>
              Si oppoſitos libræ terminos quatuor potentiæ trahant, duæ
                <lb/>
              ſursùm, & duæ deorsùm, conatus ſeù vis libram fle­
                <lb/>
              ctens menſuratur à ſumma differentiæ aſcen­
                <lb/>
              dentium, cum differentia deſcendentium
                <lb/>
              potentiarum.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000546">SI tandem eadem libra à quatuor viribus impel­
                <lb/>
              latur trahaturque, quarum duæ D, & G graues
                <lb/>
              ſint deorsùmque tendant, duæ verò M, & F ſursùm̨
                <lb/>
              eoſdem terminos libræ trahant, ſitque energia virtu­
                <lb/>
              tis M maior quàm F, pondus verò D minus ſit quàm </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>