Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[1. Figure]
[2. Figure]
[3. Figure]
[4. Figure]
[5. Figure]
[6. Figure]
[7. Figure]
[8. Figure]
[9. Figure]
[10. Figure]
[11. Figure]
[12. Figure]
[13. Figure]
[14. Figure]
[15. Figure]
[16. Figure]
[17. Figure]
[18. Figure]
[19. Figure]
[20. Figure]
[21. Figure]
[22. Figure]
[23. Figure]
[24. Figure]
[25. Figure]
[26. Figure]
[27. Figure]
[28. Figure]
[29. Figure]
[30. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000082">
                <pb pagenum="14" xlink:href="010/01/022.jpg"/>
                <arrow.to.target n="marg14"/>
                <lb/>
              eſt cylindri IG, intelligatur aqua primò eleuari iņ
                <lb/>
              ſitu T & deprimi in dextro canali in G, & hinc eleua­
                <lb/>
              ta aqua ad I deſcendat à T ad X coniungantur quę
                <lb/>
              duæ rectæ lineæ AG, & BH ſe ſecantes in M, eritque
                <lb/>
              punctum Min horizontali EL conſtitutum, propterea
                <lb/>
              quod duo cylindri aquæ AB, & HG æquales ſunt in­
                <lb/>
              ter ſe, cum ſemiſſes ſint cylindrorum æqualium TX &
                <lb/>
              IG, ergo altitudo AB ad HG eſt vt eiuſdem cylindri
                <lb/>
              baſis H ad baſim A: eadem ratione AE ad LG erit vt
                <lb/>
              baſis H ad
                <expan abbr="basĩ">basim</expan>
              A quare altitudo AE ad LG erit vt AB
                <lb/>
              ad HG,
                <expan abbr="sũq;">sunque</expan>
              duæ rectæ lineæ AE & GL
                <expan abbr="perpẽdicula">perpendicula</expan>
                <lb/>
              res ad
                <expan abbr="horizontalẽ">horizontalem</expan>
              FG, vel EL, & ideò inter ſe paral­
                <lb/>
              lelæ, ergo ob ſimilitudinem triangulorum vt AM ad
                <lb/>
              MG ita erit BM ad MH, nec non EM ad ML, & ideo
                <lb/>
              rectæ AG, BH, & EL ſe mutuo ſecabunt in eodem̨
                <lb/>
              puncto M. poſtea vt moles aquæ XBF vnà cum GHI
                <lb/>
              ad molem aquæ IHG ita fiat diſtantia HB ad BQ, &
                <lb/>
              diuidendo, vt moles aquæ XBF ad GHI ita erit di­
                <lb/>
              ſtantia HQ ad QB, ideoque ex elementis mechanicis
                <lb/>
              punctum Q erit centrum grauitatis aquæ XBF vnà
                <lb/>
              cum GHI. quando verò aqua erat in ſummitate T &
                <lb/>
              canalis GLV omninò exhauſtus erat, tunc quidem̨
                <lb/>
              centrum grauitatis totius aquæ TAF perſiſtens iņ
                <lb/>
              puncto A medio eiuſdem canalis perindè operare­
                <lb/>
              tur ac ſi ſuſpenſus fuiſſet cylindrus èx puncto A: de­
                <lb/>
              preſſa poſtmodum aqua vſque ad Y & eleuata vſque
                <lb/>
              ad L in oppoſito canali, denuo centrum grauitatis re­
                <lb/>
              pertum prædictæ aquæ exiſtet in puncto R & tandem
                <lb/>
              depreſſa aqua vſque ad A in primo caſu & vſque ad </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>