Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[181. Figure]
[182. Figure]
[183. Figure]
[184. Figure]
[185. Figure]
[186. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.001004">
                <pb pagenum="195" xlink:href="010/01/203.jpg"/>
                <arrow.to.target n="marg256"/>
                <lb/>
              habet, quam lignea moles ABC ad molem HIK. po­
                <lb/>
              natur leuitas, aut vis
                <expan abbr="eleuãs">eleuans</expan>
              N, quæ habeat ad R
                <expan abbr="quã-libet">quan­
                  <lb/>
                libet</expan>
              proportionem commenſurabilem ex inſinitis,
                <lb/>
              quæ proponi poſſunt pariterque fiat moles BM ex
                <lb/>
              eodem ligno conſtans quæ ad HIK ſe habeat vt N
                <lb/>
              ad R. mani feſtum eſt, quòd quotieſcumque lignum
                <lb/>
              BM æquatur ligno ABC, runc paritèr vis leuitatis N
                <lb/>
              æqualis erit ipſi S (eò quòd moles æquales eiuſdem̨
                <lb/>
              ligni ſursùm æquali vi leuitatis impellunt) &
                <expan abbr="quo-tieſcũque">quo­
                  <lb/>
                tieſcunque</expan>
              ligni moles BM maior fuerit, quàm ABC
                <lb/>
              ſemper leuitas N maior erit leuitate S, & quando li­
                <lb/>
              gnum BM minus fuerit, quàm ABC, erit quoque le­
                <lb/>
              uitas N minor, quàm S, & habent BM, HIK, & N &
                <lb/>
              R quamcumque proportionalitatem commenſurabi­
                <lb/>
              lem, igitur (ex noſtro Euclide reſtituto) moles li­
                <lb/>
                <arrow.to.target n="marg257"/>
                <lb/>
              gnea ABC ad molem HIK eamdem proportionem̨
                <lb/>
              habebit quam vis leuitatis S, qua nimirùm ABC in
                <lb/>
              aqua aſcendit, ad leuitatem R qua corpus HIK ele­
                <lb/>
              uatur in eodem fluido, quòd fuerat &c. </s>
            </p>
            <p type="margin">
              <s id="s.001005">
                <margin.target id="marg256"/>
              Cap. 4. poſi­
                <lb/>
              tiuam leui­
                <lb/>
              tatem noņ
                <lb/>
              dari.</s>
            </p>
            <p type="margin">
              <s id="s.001006">
                <margin.target id="marg257"/>
              Lib. 3 prop.
                <lb/>
              </s>
              <s id="s.001007">24.</s>
            </p>
            <p type="main">
              <s id="s.001008">Si quis fortè ſuſpicaretur ex figurarum diuerſitate
                <lb/>
                <arrow.to.target n="marg258"/>
                <lb/>
              prædictorum corporum leuium licèt eiuſdem conſi­
                <lb/>
              ſtentiæ homogeneæ ſint, & eumdem gradum rarita­
                <lb/>
              tis habeant, alterari poſſe iam dictam proportionali­
                <lb/>
              tatem, monendus profectò eſt, quod præter Ariſtote­
                <lb/>
                <arrow.to.target n="marg259"/>
                <lb/>
              lis aſſertum, vbi ait, quod
                <emph type="italics"/>
              figuræ non ſunt cauſæ ſimplici­
                <lb/>
              tèr aſcenſus, vel deſcenſus corporum in fluido, ſed tantum­
                <lb/>
              modò tardioris, vel celerioris motus
                <emph.end type="italics"/>
              , idipſum poſtea de­
                <lb/>
              monſtratum fuit ex Mechanicis principijs à Ghetal­
                <lb/>
              do, & Galilæo. </s>
              <s id="s.001009">attamen incaſu noſtro non requirun-</s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>