Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[31. Figure]
[32. Figure]
[33. Figure]
[34. Figure]
[35. Figure]
[36. Figure]
[37. Figure]
[38. Figure]
[39. Figure]
[40. Figure]
[41. Figure]
[42. Figure]
[43. Figure]
[44. Figure]
[45. Figure]
[46. Figure]
[47. Figure]
[48. Figure]
[49. Figure]
[50. Figure]
[51. Figure]
[52. Figure]
[53. Figure]
[54. Figure]
[55. Figure]
[56. Figure]
[57. Figure]
[58. Figure]
[59. Figure]
[60. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000118">
                <pb pagenum="23" xlink:href="010/01/031.jpg"/>
                <arrow.to.target n="marg23"/>
                <lb/>
              libra imaginaria HI, quia hæc duo corpora motibus
                <lb/>
              contrarijs agitantur ſuſpendunturque ab eadem li­
                <lb/>
              bra horizontali: nec actionem eorumdem corporum
                <lb/>
              impediunt, vel adiuuant ſupremæ, vel infimæ aquæ
                <lb/>
              partes; quando quidem aqua AB,
                <lb/>
                <figure id="id.010.01.031.1.jpg" xlink:href="010/01/031/1.jpg"/>
                <lb/>
              æquilibratur collaterali AG cùm̨
                <lb/>
              ſint homogeneæ & æquè altæ, non
                <lb/>
              ſecùs infimæ aquæ partes CD & F
                <lb/>
              E inter ſe æquilibrantur; quare ac­
                <lb/>
              tioni compreſſiuæ mercurij CB,
                <expan abbr="tã-tummodo">tan­
                  <lb/>
                tummodo</expan>
              contraponitur pondus
                <lb/>
              aquæ FG in eodem ſitu horizontali
                <lb/>
              conſtitutæ. </s>
              <s id="s.000119">fiat iam vt pondus mer­
                <lb/>
              curij CB ad grauitatem aquæ FG
                <lb/>
              ita reciprocè diſtantia IM ad MH,
                <lb/>
              quare punctum M erit centrum gra­
                <lb/>
              uitatis duorum corporum BC, & GF, cùmque librą
                <lb/>
              imaginaria HI fulciatur in puncto L rectæ LK per­
                <lb/>
              pendiculariter horizonti eductæ ex infimo ſitu fiſtu­
                <lb/>
              læ, vbi bifariam libra, & magnitudines fluidæ
                <expan abbr="ſecã-tur">ſecan­
                  <lb/>
                tur</expan>
              , igitur conſtituitur fune-pendulum LM, & proin­
                <lb/>
              dè, iuxtà leges mechanices, libra flectetur
                <expan abbr="deſcendẽ-do">deſcenden­
                  <lb/>
                do</expan>
              corpus BC, & aſcendendo aquam FG, & hoc per­
                <lb/>
              ficitur propterea quòd centrum communis grauita­
                <lb/>
              tis M neceſſariò labitur deorſum iuxta penduli na­
                <lb/>
              turam. </s>
              <s id="s.000120">ſed prædictus motus centri grauitatis M non
                <lb/>
              eſt circularis, ſed eſt directus ad horizontem
                <expan abbr="perpẽ-dicularis">perpen­
                  <lb/>
                dicularis</expan>
              , per lineam MQ
                <expan abbr="">non</expan>
              ſecùs ac in trochlea
                <expan abbr="cõ-tingit">con­
                  <lb/>
                tingit</expan>
              vt dictum eſt; huius operationis verò progreſ-</s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>