Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[71. Figure]
[72. Figure]
[73. Figure]
[74. Figure]
[75. Figure]
[76. Figure]
[77. Figure]
[78. Figure]
[79. Figure]
[80. Figure]
[81. Figure]
[82. Figure]
[83. Figure]
[84. Figure]
[85. Figure]
[86. Figure]
[87. Figure]
[88. Figure]
[89. Figure]
[90. Figure]
[91. Figure]
[92. Figure]
[93. Figure]
[94. Figure]
[95. Figure]
[96. Figure]
[97. Figure]
[98. Figure]
[99. Figure]
[100. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000293">
                <pb pagenum="63" xlink:href="010/01/071.jpg"/>
                <arrow.to.target n="marg68"/>
                <lb/>
              rantes ſibi mutuò impellunt, & proindè vna alterius
                <lb/>
              vim, & actionem deſtruit, quantum ergo lamina in­
                <lb/>
              flectitur deorsùm à
                <expan abbr="põdere">pondere</expan>
              C, tantumdèm ſursùm re­
                <lb/>
              flectitur à contrario impulſu ipſius H.
                <margin.target id="marg68"/>
              Cap. 3. flui­
                <lb/>
              dum in ſuo
                <lb/>
              toto quie­
                <lb/>
              ſcens pon­
                <lb/>
              derat.</s>
            </p>
            <p type="main">
              <s id="s.000294">
                <emph type="center"/>
              PROP. XXVII.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000295">
                <emph type="center"/>
                <emph type="italics"/>
              Idipſum adhibitis contrarijs ponderibus ope libræ
                <lb/>
              verificatur.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000296">APplicetur libra DE radio­
                <lb/>
                <figure id="id.010.01.071.1.jpg" xlink:href="010/01/071/1.jpg"/>
                <lb/>
              rum æqualium ſuffultą
                <lb/>
              in F, it aut terminus D infrà ex­
                <lb/>
              tremitatem laminæ AB collo­
                <lb/>
              cetur, & tunc poſito pondere
                <lb/>
              G æquale ipſi C in altero extremo libræ E, impel­
                <lb/>
              letur ſursùm terminus libræ, vel vectis D à vi pon­
                <lb/>
              deris G, & ab illo lamina AB in directum retine­
                <lb/>
              bitur contra vim compreſſiuam ponderis C,
                <expan abbr="quãdo-quidem">quando­
                  <lb/>
                quidem</expan>
              duo pondera C, & G inter ſe æqualia ſe mu­
                <lb/>
              tuò impellunt, proindeque lamina intercepta AB,
                <lb/>
              neque deorsùm, neque ſursùm flectetur. </s>
            </p>
            <p type="main">
              <s id="s.000297">
                <emph type="center"/>
              PROP. XXVIII.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000298">
                <emph type="center"/>
                <emph type="italics"/>
              Idipſum alia ratione vſurpata libra demonſtratur.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000299">SI nimirùm termino E im­
                <lb/>
                <figure id="id.010.01.071.2.jpg" xlink:href="010/01/071/2.jpg"/>
                <lb/>
              ponatur pondus IG du­
                <lb/>
              plum ipſius C, atque in D ap­
                <lb/>
              plicetur pondus M æqualę
                <lb/>
              eidem C,
                <expan abbr="manifeſtũ">manifeſtum</expan>
              eſt, quòd
                <lb/>
              pondus IG æquale eſt duo-</s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>