Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000953">
                <pb pagenum="187" xlink:href="010/01/195.jpg"/>
                <arrow.to.target n="marg240"/>
                <lb/>
              v. g. & altitudo columnæ CB decies maior radio ba­
                <lb/>
              ſis, tunc totalis reſiſtentia prædictæ contiguitatis, ſeù
                <lb/>
              repugnantia ad vacuuum admittendum, æqualis erit
                <lb/>
              potentiæ ponderis triginta librarum. </s>
              <s id="s.000954">Quaproptèr
                <lb/>
              conſtat, quòd vis, quæ requiritur ad reſiſtentiam
                <expan abbr="cõ-tactus">con­
                  <lb/>
                tactus</expan>
              directè ſuperandam, licèt maior vt plurimùm
                <lb/>
              ſit, quàm ea quæ actu exercetur, nihilominùs finita,
                <lb/>
              & determinata eſt, & facili negotio indagari, men­
                <lb/>
              ſurarique poteſt. </s>
              <s id="s.000955">His declaratis pergo ad
                <expan abbr="demõſtrã-dum">demonſtran­
                  <lb/>
                dum</expan>
              , quòd. </s>
            </p>
            <p type="margin">
              <s id="s.000956">
                <margin.target id="marg238"/>
              Cap. 4. poſi­
                <lb/>
              tiuam leui­
                <lb/>
              tatem noņ
                <lb/>
              dari.</s>
            </p>
            <p type="margin">
              <s id="s.000957">
                <margin.target id="marg239"/>
              Cap. 4. poſi­
                <lb/>
              tiuam leui­
                <lb/>
              tatem noņ
                <lb/>
              dari.</s>
            </p>
            <p type="margin">
              <s id="s.000958">
                <margin.target id="marg240"/>
              Cap. 4. poſi­
                <lb/>
              tiuam leui­
                <lb/>
              tatem noņ
                <lb/>
              dari.</s>
            </p>
            <p type="main">
              <s id="s.000959">
                <emph type="center"/>
              PROP. XCI.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000960">
                <emph type="center"/>
                <emph type="italics"/>
              Dato quolibet corpore duro homogeneo, aliudilli æquale repe­
                <lb/>
              riri poteſt, cuius raritas abſoluta ad illius raritatem
                <lb/>
              maiorem proportionem qualibet dataratione
                <lb/>
              maioris inæqualitatis habeat.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000961">SIt cylindrus ſolidus ABC, &
                <lb/>
                <figure id="id.010.01.195.1.jpg" xlink:href="010/01/195/1.jpg"/>
                <lb/>
              quælibet data ratio maioris
                <lb/>
              inæqualitatis T ad V, & fiat RS
                <lb/>
              maior quàm T. reperiri debetcy­
                <lb/>
              linder æqualis ABC cuius rari­
                <lb/>
              tas abſoluta ad raritatem ABC
                <lb/>
              ſit vt RS ad V. </s>
              <s id="s.000962">Secetur portio cy­
                <lb/>
              lindrica AD, & RX proximè maior quam V, & fiat
                <lb/>
              cylindrus ſolidus EF æqualis AD, cuiuſ raritas in
                <lb/>
              ſpecie ad raritatem ipſius AC ſit vt RX ad V; poſtea
                <lb/>
              fiat alius cylindrus, ſiue fluidus, ſiue ſolidus FG æ­
                <lb/>
              qualis DB, ita vt illius raritas in ſpecie ad raritatem </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>