Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[1. Figure]
[2. Figure]
[3. Figure]
[4. Figure]
[5. Figure]
[6. Figure]
[7. Figure]
[8. Figure]
[9. Figure]
[10. Figure]
[11. Figure]
[12. Figure]
[13. Figure]
[14. Figure]
[15. Figure]
[16. Figure]
[17. Figure]
[18. Figure]
[19. Figure]
[20. Figure]
[21. Figure]
[22. Figure]
[23. Figure]
[24. Figure]
[25. Figure]
[26. Figure]
[27. Figure]
[28. Figure]
[29. Figure]
[30. Figure]
< >
page |< < (16) of 213 > >|
DE IIS QVAE VEH. IN AQVA.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="27">
          <p>
            <s xml:space="preserve">
              <pb o="16" file="0043" n="43" rhead="DE IIS QVAE VEH. IN AQVA."/>
            dratum n o ad quadratum p f. </s>
            <s xml:space="preserve">quadratum igitur n o ad
              <lb/>
            quadratum p f non maiorem proportionem habet, quàm
              <lb/>
            ad quadratum m o. </s>
            <s xml:space="preserve">ex quo eſſicitur, ut p f non ſit minor
              <lb/>
              <anchor type="note" xlink:label="note-0043-01a" xlink:href="note-0043-01"/>
            ipſa o m; </s>
            <s xml:space="preserve">neque p b ipſa o h. </s>
            <s xml:space="preserve">quæ ergo ab h ducitur ad
              <lb/>
              <anchor type="note" xlink:label="note-0043-02a" xlink:href="note-0043-02"/>
            rectos angulos ipſi n o, coibit cum b p inter p & </s>
            <s xml:space="preserve">b. </s>
            <s xml:space="preserve">co-
              <lb/>
            eatin t. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quoniam in rectanguli coniſectione p f eſt æqui
              <lb/>
            diſtans diametro n o; </s>
            <s xml:space="preserve">h t autem ad diametrum perpẽ-
              <lb/>
            dicularis: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">r h æqualis ei, quæ uſque ad axem: </s>
            <s xml:space="preserve">conſtat r t
              <lb/>
            productam ſacere angulos rectos cum ipſa k p ω. </s>
            <s xml:space="preserve">quare
              <lb/>
            & </s>
            <s xml:space="preserve">cum is. </s>
            <s xml:space="preserve">ergo rt perpendicularis eſt ad ſuperſiciem hu
              <lb/>
            midi. </s>
            <s xml:space="preserve">et ſi per b g puncta ducantur æquidiſtantes ipſirt,
              <lb/>
            ad ſuperſiciem humidi perpendicular es erunt. </s>
            <s xml:space="preserve">portio igi
              <lb/>
            tur, qnæ eſt extra humidum, deorſum in humidum feretur
              <lb/>
            ſecundum perpendicularem per b ductam; </s>
            <s xml:space="preserve">quæ uero in-
              <lb/>
            tra humidum ſecundum perpendicularem per g ſurſum
              <lb/>
            feretur: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">non manebit ſolida portio a p o l, ſedintra hu
              <lb/>
            midum mouebitur, donecutique ipſa n o ſecundum per-
              <lb/>
            pendicularem ſiat.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0042-01" xlink:href="fig-0042-01a">
              <image file="0042-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0042-01"/>
            </figure>
            <note position="left" xlink:label="note-0042-01" xlink:href="note-0042-01a" xml:space="preserve">11. quin-
              <lb/>
            ti.</note>
            <note position="left" xlink:label="note-0042-02" xlink:href="note-0042-02a" xml:space="preserve">A</note>
            <note position="left" xlink:label="note-0042-03" xlink:href="note-0042-03a" xml:space="preserve">B</note>
            <note position="right" xlink:label="note-0043-01" xlink:href="note-0043-01a" xml:space="preserve">C</note>
            <note position="right" xlink:label="note-0043-02" xlink:href="note-0043-02a" xml:space="preserve">D</note>
          </div>
        </div>
        <div type="section" level="1" n="28">
          <head xml:space="preserve">COMMENTARIVS.</head>
          <p style="it">
            <s xml:space="preserve">_Quare non maiorem proportionem habet tota portio_
              <lb/>
              <anchor type="note" xlink:label="note-0043-03a" xlink:href="note-0043-03"/>
            _ad eam, quæ eſt extra humidum, quam quadratum n o ad_
              <lb/>
            _quadratum m o]_ cum enim magnitudo portionis in bumidum
              <lb/>
            demerſa ad totam portionem non maiorem proportionem babeat,
              <lb/>
            quàm exceſſus, quo quadratum n o excedit quadratum m o, ad ip-
              <lb/>
            ſum no quadratum: </s>
            <s xml:space="preserve">conuertendo per uigeſimáſextam quinti ele-
              <lb/>
            mentorum ex traditione Campani, tota portio ad magnitudinem de
              <lb/>
            merſam non minorem proportionem babebit, quàm quadratum n o
              <lb/>
            ad exceſſum, quo ipſum quadratum no excedit quadratum m o. </s>
            <s xml:space="preserve">In
              <lb/>
            telligatur portio, quæ extra bumidum, magnitudo prima: </s>
            <s xml:space="preserve">quæ in bu
              <lb/>
            mido demerſa est, ſecunda: </s>
            <s xml:space="preserve">tertia autem magnitudo ſit quadratum
              <lb/>
            mo: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">exceſſus, quo quadratum n o excedit quadratum m o ſit
              <lb/>
            quarta. </s>
            <s xml:space="preserve">ex his igitur magnitudinibus, primæ & </s>
            <s xml:space="preserve">ſecundæ ad ſecun-</s>
          </p>
        </div>
      </text>
    </echo>