Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[11. Figure]
[12. Figure]
[13. Figure]
[14. Figure]
[15. Figure]
[16. Figure]
[17. Figure]
[18. Figure]
[19. Figure]
[20. Figure]
[21. Figure]
[22. Figure]
[23. Figure]
[24. Figure]
[25. Figure]
[26. Figure]
[27. Figure]
[28. Figure]
[29. Figure]
[30. Figure]
[31. Figure]
[32. Figure]
[33. Figure]
[34. Figure]
[35. Figure]
[36. Figure]
[37. Figure]
[38. Figure]
[39. Figure]
[40. Figure]
< >
page |< < of 213 > >|
FED. COMMANDINI
in linea e b punctũ g, it aut ſit g e æqualis e f. erit g por-
tionis a b c centrum.
nam ſi hæ portiones, quæ æquales
&
ſimiles ſunt, inter ſe ſe aptentur, ita ut b e cadat in d e,
&
punctum b in d cadet, & g in f: figuris autem æquali-
bus, &
ſimilibus inter ſe aptatis, centra quoque grauitatis
ipſarum inter ſe aptata erunt, ex quinta petitione Archi-
medis in libro de centro grauitatis planorum.
Quare cum
portionis a d c centrum grauitatis ſit ſ:
& portionis
a b c centrum g:
magnitudinis; quæ ex utriſque efficitur:
hoc eſt circuli uel ellipſis grauitatis centrum in medio li-
neæ f g, quod eſt e, conſiſtet, ex quarta propoſitione eiuſ-
dem libri Archimedis.
ergo circuli, uel ellipſis centrum
grauitatis eſt idem, quod figuræ centrum.
atque illud eſt,
quod demonſtrare oportebat.
Ex quibus ſequitur portionis circuli, uel ellip-
ſis, quæ dimidia maior ſit, centrum grauitatis in
diametro quoque ipſius conſiſtere.
Figure: /permanent/library/4E7V2WGH/figures/0124-01 not scanned
[Figure 80]
Sit enim maior portio a b c, cu_i_us diameter b d, & com-
pleatur circulus, uel ellipſis, ut portio reliqua ſit a e c, dia

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index