Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[11. Figure]
[12. Figure]
[13. Figure]
[14. Figure]
[15. Figure]
[16. Figure]
[17. Figure]
[18. Figure]
[19. Figure]
[20. Figure]
[21. Figure]
[22. Figure]
[23. Figure]
[24. Figure]
[25. Figure]
[26. Figure]
[27. Figure]
[28. Figure]
[29. Figure]
[30. Figure]
[31. Figure]
[32. Figure]
[33. Figure]
[34. Figure]
[35. Figure]
[36. Figure]
[37. Figure]
[38. Figure]
[39. Figure]
[40. Figure]
< >
page |< < of 213 > >|
ARCHIMEDIS
_quæ diametrum ſecet in ψ; ſecet autem i m eandem in σ: & a q in_
_v.
Dico angulum a ν d angulo i σ d minoré eſſe. angulus enimi ψ d_
_æqualis est angulo a ν d.
ſed angulus interior i ψ d minor eſt exte-_
29. primi_riore i σ d.
ergo & a ν d ipſo i σ d minor erit_.
16. primi
D_n.
]_ Ducantur per o duæ lineæ, o c quidem ad diametrum b d per-
pendicularis:
& o χ in puncto o ſectionem contingens, quæ diame
trum ſecet in χ.
æquidiſtabit o χ ipſi a q: atque erit angulus ad
5. ſecũdi
conicoiũ
χ æqualis ei, qui ad ν.
29. primi.qui ad n minor erit:
& propterea χ infra n cadet. linea igitur χ b
35. primi
conicorũ
maior eſt, quàm n b.
Sed cum b c ſit æqualis χ b, & b s ipſi n b:
erit b c ipſa b s maior.
Ergo æquales faciunt angulos a q, a m cum diametris
Eportionum.
] _Hoc demonstrabimus ut in commentarĳs in ſecun-_
_dam partem_.
_Similiter demonſtrabitur, portionem, quæ ad humidũ_
F_in grauitate ean-_

[Figure 59]
_dem proportio-_
_nem habeat, quã_
in_
_humidum demiſ-_
_ſam, ita ut baſis ip_
_ſius non cõtingat_
_humidum, incli-_
_natam conſiſtere_
_uno pũcto humi-_
_di ſuperficiem cõ_
_tingat:
& axis cũ_
_ipſa faciat angulũ_
_angulo φ æqualẽ]_
Habeat portio ad humidum in grauitate proportionem eam, quam