Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[31. Figure]
[32. Figure]
[33. Figure]
[34. Figure]
[35. Figure]
[36. Figure]
[37. Figure]
[38. Figure]
[39. Figure]
[40. Figure]
[41. Figure]
[42. Figure]
[43. Figure]
[44. Figure]
[45. Figure]
[46. Figure]
[47. Figure]
[48. Figure]
[49. Figure]
[50. Figure]
[51. Figure]
[52. Figure]
[53. Figure]
[54. Figure]
[55. Figure]
[56. Figure]
[57. Figure]
[58. Figure]
[59. Figure]
[60. Figure]
< >
page |< < (44) of 213 > >|
DE IIS QVAE VEH. IN AQVA.
gura: & alia eadem diſponantur demonſtrabimus rurſum
n t æqualem eſſe ipſi u i:
& portiones a u q, a n z inter
ſe ſe æquales.
Figure: /permanent/library/4E7V2WGH/figures/0099-01 not scanned
[Figure 63]
Itaque quoniã
ĩ portionibus
æqualibus, &
ſi
milibus a u q l,
a n z g ductæ
sũt a q, a z, por
tiones æqua-
les auferentes;
cum diametris
portionum æ-
quales angu-
los cõtinebũt.

ergo triangulo
rum n l s, u ω c
anguli, qui cõ-
ſiſtũt ad l ω pũ-
cta, æquales ſunt:
& b s recta linea æqualis ipſi b c: ſ r ipſi cr,
n χ ipſi u h:
& χ tipſi h i. quòd cum u y dupla ſit ipſius y i,
erit n χ maior, quàm dupla χ t.
Sit igitur n m ipſius m t du
pla.
Rurſus ex his manifeſtum eſt, non manere ipſam por-
tionem;
ſed inclinari ex parte a: ponebatur autem portio
humidi ſuperficiem in uno puncto contingere.
ergo ne-
ceſſe eſt, ut eius baſis in humidum magis demergatur.

DEMONSTRATIO QVINT AE PARTIS.

HABEAT denique portio ad humidum in grauitate
minorem proportionem, quàm quadratum f p ad quadra-
tum b d:
& quam proportionem habet portio ad humidũ
in grauitate, eandem quadratum, quod fit à linea ψ habeat
ad quadratum b d.
erit χ minor ipſa p f. Rurſus aptetur

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index