Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[31. Figure]
[32. Figure]
[33. Figure]
[34. Figure]
[35. Figure]
[36. Figure]
[37. Figure]
[38. Figure]
[39. Figure]
[40. Figure]
[41. Figure]
[42. Figure]
[43. Figure]
[44. Figure]
[45. Figure]
[46. Figure]
[47. Figure]
[48. Figure]
[49. Figure]
[50. Figure]
[51. Figure]
[52. Figure]
[53. Figure]
[54. Figure]
[55. Figure]
[56. Figure]
[57. Figure]
[58. Figure]
[59. Figure]
[60. Figure]
< >
page |< < (25) of 213 > >|
DE IIS QVAE VEH. IN AQVA.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="44">
          <p style="it">
            <s xml:space="preserve">
              <pb o="25" file="0077" n="77" rhead="DE IIS QVAE VEH. IN AQVA."/>
            itêmq; </s>
            <s xml:space="preserve">quadratum c q æquale rectangulo q u y, hoc eſt ſectionum
              <lb/>
            h s c, m u c lineas s x, u y, eas eſſe, iuxta quas poſſunt, quæ à ſectio-
              <lb/>
            ne ad diametrum ducuntur. </s>
            <s xml:space="preserve">ſed cú triangula c p r, c q t ſimilia ſint,
              <lb/>
            habebit c r ad c p eandem proportionem, quam c t ad c q: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">id-
              <lb/>
              <anchor type="note" xlink:label="note-0077-01a" xlink:href="note-0077-01"/>
            circo quadratum c r ad quadratum c p eandem habebit, quam
              <lb/>
            quadratum c t ad quadratum c q. </s>
            <s xml:space="preserve">ergo & </s>
            <s xml:space="preserve">linea b n, ad lineam
              <lb/>
            ſ x ita erit, ut linea fo ad ipſam u y. </s>
            <s xml:space="preserve">erat autem b c ad c m, ut a c
              <lb/>
            ad c e. </s>
            <s xml:space="preserve">quare & </s>
            <s xml:space="preserve">earum dimidiæ c p ad c q, ut a d ad e g: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            permutando c p ad a d, ut c q ad e g. </s>
            <s xml:space="preserve">Sed oſtenſum est a d ad b n
              <lb/>
            ita eſſe, ut e g ad f o: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">b n ad s x, ut f o ad u y. </s>
            <s xml:space="preserve">ergo ex
              <lb/>
            æquali c p ad ſ x erit, ut c q ad u y. </s>
            <s xml:space="preserve">Quòd cum quadratú c p æqua
              <lb/>
            le ſit rectangulo p s x & </s>
            <s xml:space="preserve">quadratum c q rectangulo q u y, erunt
              <lb/>
            tres lineæ ſ p, p c, ſ x proportionales; </s>
            <s xml:space="preserve">itemq; </s>
            <s xml:space="preserve">proportionales ip-
              <lb/>
            ſæ u q, q c, u y. </s>
            <s xml:space="preserve">quare & </s>
            <s xml:space="preserve">ſ p ad p c, ut u q ad q c: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ut p c ad
              <lb/>
            c h, ita q c ad c m. </s>
            <s xml:space="preserve">ex æquali igitur ut portionis h ſ c diameter ſ p
              <lb/>
            ad eius baſim c h, ita portionis m u s diameter u q ad baſim c m.
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">anguli, quos diametri cum baſibus continent, ſunt æquales, quòd
              <lb/>
            lineæ ſ p, u q ſibi ipſis æquidiſtent, ergo & </s>
            <s xml:space="preserve">portiones h ſ c, m u c
              <lb/>
            inter ſe ſimiles erunt. </s>
            <s xml:space="preserve">id quod demonstrandum proponebatur.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0076-01" xlink:href="fig-0076-01a">
              <image file="0076-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0076-01"/>
            </figure>
            <note position="right" xlink:label="note-0077-01" xlink:href="note-0077-01a" xml:space="preserve">22. fexti</note>
          </div>
        </div>
        <div type="section" level="1" n="45">
          <head xml:space="preserve">LEMMA IIII.</head>
          <p style="it">
            <s xml:space="preserve">Sint duæ lineæ a b, c d, quæ ſecentur in punctis e f,
              <lb/>
            ita ut quam proportionem habet a e ad e b, habeat c f
              <lb/>
            ad f d: </s>
            <s xml:space="preserve">rurſus ſecentur in aliis duobus punctis g h; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            habeat c h ad h d eandem proportionem, quam a g ad
              <lb/>
            g b. </s>
            <s xml:space="preserve">Dico c f ad f h ita eſſe, ut a e ad e g.</s>
            <s xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:space="preserve">
              <emph style="sc">Q_voniam_</emph>
            enim ut a e ad e b, ita c f ad f d, erit componen
              <lb/>
            do ut a b ad e b, ita c d ad f d. </s>
            <s xml:space="preserve">Rurſus cum ſit ut a g ad g b, ita
              <lb/>
            c h ad h d; </s>
            <s xml:space="preserve">componendo, conuertendoq; </s>
            <s xml:space="preserve">ut g b ad a b, ita erit h d
              <lb/>
            ad c d. </s>
            <s xml:space="preserve">ergo ex æquali, conuertendoq; </s>
            <s xml:space="preserve">ut e b ad g b, ita f d ad h d:</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>