Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[61. Figure]
[62. Figure]
[63. Figure]
[64. Figure]
[65. Figure]
[66. Figure]
[67. Figure]
[68. Figure]
[69. Figure]
[70. Figure]
[71. Figure]
[72. Figure]
[73. Figure]
[74. Figure]
[75. Figure]
[76. Figure]
[77. Figure]
[78. Figure]
[79. Figure]
[80. Figure]
[81. Figure]
[82. Figure]
[83. Figure]
[84. Figure]
[85. Figure]
[86. Figure]
[87. Figure]
[88. Figure]
[89. Figure]
[90. Figure]
< >
page |< < (2) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="64">
          <p>
            <s xml:space="preserve">
              <pb o="2" file="0115" n="115" rhead="DE CENTRO GRAVIT. SOLID."/>
            tur, centrum grauitatis eſt idem, quod circuli cen
              <lb/>
            trum.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Sit primo triangulum æquilaterum a b c in circulo de-
              <lb/>
            ſcriptum: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">diuiſa a c bifariam in d, ducatur b d. </s>
            <s xml:space="preserve">erit in li-
              <lb/>
            nea b d centrum grauitatis triãguli a b c, ex tertia decima
              <lb/>
            primi libri Archimedis de centro grauitatis planorum. </s>
            <s xml:space="preserve">Et
              <lb/>
            quoniam linea a b eſt æqualis
              <lb/>
              <anchor type="figure" xlink:label="fig-0115-01a" xlink:href="fig-0115-01"/>
            lineæ b c; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">a d ipſi d c; </s>
            <s xml:space="preserve">eſtq́;
              <lb/>
            </s>
            <s xml:space="preserve">b d utrique communis: </s>
            <s xml:space="preserve">trian-
              <lb/>
            gulum a b d æquale erit trian
              <lb/>
              <anchor type="note" xlink:label="note-0115-01a" xlink:href="note-0115-01"/>
            gulo c b d: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">anguli angulis æ-
              <lb/>
            quales, qui æqualibus lateri-
              <lb/>
            bus ſubtenduntur. </s>
            <s xml:space="preserve">ergo angu
              <lb/>
              <anchor type="note" xlink:label="note-0115-02a" xlink:href="note-0115-02"/>
            li ad d utriq; </s>
            <s xml:space="preserve">recti ſunt. </s>
            <s xml:space="preserve">quòd
              <lb/>
            cum linea b d ſecet a c biſa-
              <lb/>
            riam, & </s>
            <s xml:space="preserve">ad angulos rectos; </s>
            <s xml:space="preserve">in
              <lb/>
              <anchor type="note" xlink:label="note-0115-03a" xlink:href="note-0115-03"/>
            ipſa b d eſt centrum circuli.
              <lb/>
            </s>
            <s xml:space="preserve">quare in eadem b d linea erit
              <lb/>
            centrum grauitatis trianguli, & </s>
            <s xml:space="preserve">circuli centrum. </s>
            <s xml:space="preserve">Similiter
              <lb/>
            diuiſa a b bifariam in e, & </s>
            <s xml:space="preserve">ducta c e, oſtendetur in ipſa utrũ
              <lb/>
            que centrum contineri. </s>
            <s xml:space="preserve">ergo ea erunt in puncto, in quo li-
              <lb/>
            neæ b d, c e conueniunt. </s>
            <s xml:space="preserve">trianguli igitur a b c centrum gra
              <lb/>
            uitatis eſt idem, quod circuli centrum.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0115-01" xlink:href="fig-0115-01a">
              <image file="0115-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0115-01"/>
            </figure>
            <note position="right" xlink:label="note-0115-01" xlink:href="note-0115-01a" xml:space="preserve">8. primi.</note>
            <note position="right" xlink:label="note-0115-02" xlink:href="note-0115-02a" xml:space="preserve">13. primi.</note>
            <note position="right" xlink:label="note-0115-03" xlink:href="note-0115-03a" xml:space="preserve">corol. p@@
              <lb/>
            mæ tertii</note>
          </div>
          <p>
            <s xml:space="preserve">Sit quadratum a b c d in cir-
              <lb/>
              <anchor type="figure" xlink:label="fig-0115-02a" xlink:href="fig-0115-02"/>
            culo deſcriptum: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ducantur
              <lb/>
            a c, b d, quæ conueniant in e. </s>
            <s xml:space="preserve">er-
              <lb/>
            go punctum e eſt centrum gra
              <lb/>
            uitatis quadrati, ex decima eiuſ
              <lb/>
            dem libri Archimedis. </s>
            <s xml:space="preserve">Sed cum
              <lb/>
            omnes anguli ad a b c d recti
              <lb/>
            ſint; </s>
            <s xml:space="preserve">erit a b c femicirculus:
              <lb/>
            </s>
            <s xml:space="preserve">
              <anchor type="note" xlink:label="note-0115-04a" xlink:href="note-0115-04"/>
            itemq́; </s>
            <s xml:space="preserve">b c d: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">propterea li-
              <lb/>
            neæ a c, b d diametri circuli:</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>