Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[61. Figure]
[62. Figure]
[63. Figure]
[64. Figure]
[65. Figure]
[66. Figure]
[67. Figure]
[68. Figure]
[69. Figure]
[70. Figure]
[71. Figure]
[72. Figure]
[73. Figure]
[74. Figure]
[75. Figure]
[76. Figure]
[77. Figure]
[78. Figure]
[79. Figure]
[80. Figure]
[81. Figure]
[82. Figure]
[83. Figure]
[84. Figure]
[85. Figure]
[86. Figure]
[87. Figure]
[88. Figure]
[89. Figure]
[90. Figure]
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="64">
          <p>
            <s xml:space="preserve">
              <pb file="0118" n="118" rhead="FED. COMMANDINI"/>
            do in reliquis figuris æquilateris, & </s>
            <s xml:space="preserve">æquiangulis, quæ in cir-
              <lb/>
            culo deſcribuntur, probabimus cẽtrum grauitatis earum,
              <lb/>
            & </s>
            <s xml:space="preserve">centrum circuli idem eſſe. </s>
            <s xml:space="preserve">quod quidem demonſtrare
              <lb/>
            oportebat.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="5">
            <figure xlink:label="fig-0117-02" xlink:href="fig-0117-02a">
              <image file="0117-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0117-02"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Ex quibus apparet cuiuslibet figuræ rectilineæ
              <lb/>
            in circulo plane deſcriptæ centrum grauitatis idẽ
              <lb/>
            eſſe, quod & </s>
            <s xml:space="preserve">circuli centrum.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Figuram in circulo plane deſcriptam appella-
              <lb/>
              <anchor type="note" xlink:label="note-0118-01a" xlink:href="note-0118-01"/>
            mus, cuiuſmodi eſt ea, quæ in duodecimo elemen
              <lb/>
            torum libro, propoſitione ſecunda deſcribitur.
              <lb/>
            </s>
            <s xml:space="preserve">ex æqualibus enim lateribus, & </s>
            <s xml:space="preserve">angulis conſtare
              <lb/>
            perſpicuum eſt.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="6">
            <note position="left" xlink:label="note-0118-01" xlink:href="note-0118-01a" xml:space="preserve">γνωρ@ μω@</note>
          </div>
        </div>
        <div type="section" level="1" n="65">
          <head xml:space="preserve">THEOREMA II. PROPOSITIO II.</head>
          <p>
            <s xml:space="preserve">Omnis figuræ rectilineæ in ellipſi plane deſcri-
              <lb/>
            ptæ centrum grauitatis eſt idem, quod ellipſis
              <lb/>
            centrum.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Quo modo figura rectilinea in ellipſi plane deſcribatur,
              <lb/>
            docuimus in commentarijs in quintam propoſitionem li-
              <lb/>
            bri Archimedis de conoidibus, & </s>
            <s xml:space="preserve">ſphæroidibus.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Sit ellipſis a b c d, cuius maior axis a c, minor b d: </s>
            <s xml:space="preserve">iun-
              <lb/>
            ganturq́; </s>
            <s xml:space="preserve">a b, b c, c d, d a: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">bifariam diuidantur in pun-
              <lb/>
            ctis e f g h. </s>
            <s xml:space="preserve">à centro autem, quod ſit k ductæ lineæ k e, k f,
              <lb/>
            k g, k h uſque ad ſectionem in puncta l m n o protrahan-
              <lb/>
            tur: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iungantur l m, m n, n o, o l, ita ut a c ſecet li-
              <lb/>
            neas l o, m n, in z φ punctis, & </s>
            <s xml:space="preserve">b d ſecet l m, o n in χ ψ.
              <lb/>
            </s>
            <s xml:space="preserve">erunt l k, k n linea una, itemq́ue linea unaipſæ m k, k o: </s>
            <s xml:space="preserve">
              <lb/>
            & </s>
            <s xml:space="preserve">lineæ b a, c d æquidiſtabunt lineæ m o: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">b c, a d ipſi
              <lb/>
            l n. </s>
            <s xml:space="preserve">rurſus l o, m n axi b d æquidiſtabunt: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">l m,</s>
          </p>
        </div>
      </text>
    </echo>