Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[61. Figure]
[62. Figure]
[63. Figure]
[64. Figure]
[65. Figure]
[66. Figure]
[67. Figure]
[68. Figure]
[69. Figure]
[70. Figure]
[71. Figure]
[72. Figure]
[73. Figure]
[74. Figure]
[75. Figure]
[76. Figure]
[77. Figure]
[78. Figure]
[79. Figure]
[80. Figure]
[81. Figure]
[82. Figure]
[83. Figure]
[84. Figure]
[85. Figure]
[86. Figure]
[87. Figure]
[88. Figure]
[89. Figure]
[90. Figure]
< >
page |< < (8) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="69">
          <p>
            <s xml:space="preserve">
              <pb o="8" file="0127" n="127" rhead="DE CENTRO GRAVIT. SOLID."/>
            æquidiſtant autem c g o, m n p. </s>
            <s xml:space="preserve">ergo parallelogrãma ſunt
              <lb/>
            o n, g m, & </s>
            <s xml:space="preserve">linea m n æqualis c g; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">n p ipſi g o. </s>
            <s xml:space="preserve">aptatis igi-
              <lb/>
            tur
              <emph style="sc">K</emph>
            l m, a b c triãgulis, quæ æqualia & </s>
            <s xml:space="preserve">ſimilia sũt; </s>
            <s xml:space="preserve">linea m p
              <lb/>
            in c o, & </s>
            <s xml:space="preserve">punctum n in g cadet. </s>
            <s xml:space="preserve">Quòd cũ g ſit centrum gra-
              <lb/>
            uitatis trianguli a b c, & </s>
            <s xml:space="preserve">n trianguli
              <emph style="sc">K</emph>
            l m grauitatis cen-
              <lb/>
            trum erit id, quod demonſtrandum relinquebatur. </s>
            <s xml:space="preserve">Simili
              <lb/>
            ratione idem contingere demonſtrabimus in aliis priſma-
              <lb/>
            tibus, ſiue quadrilatera, ſiue plurilatera habeant plana,
              <lb/>
            quæ opponuntur.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <note position="left" xlink:label="note-0126-01" xlink:href="note-0126-01a" xml:space="preserve">10. unde
              <lb/>
            cimi</note>
            <note position="left" xlink:label="note-0126-02" xlink:href="note-0126-02a" xml:space="preserve">10. unde-
              <lb/>
            cimi</note>
            <note position="left" xlink:label="note-0126-03" xlink:href="note-0126-03a" xml:space="preserve">4. ſexti</note>
            <figure xlink:label="fig-0126-01" xlink:href="fig-0126-01a">
              <image file="0126-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0126-01"/>
            </figure>
            <note position="left" xlink:label="note-0126-04" xlink:href="note-0126-04a" xml:space="preserve">per 5. pe-
              <lb/>
            titionem
              <lb/>
            Archime
              <lb/>
            dis.</note>
          </div>
        </div>
        <div type="section" level="1" n="70">
          <head xml:space="preserve">COROLLARIVM.</head>
          <p>
            <s xml:space="preserve">Exiam demonſtratis perſpicue apparet, cuius
              <lb/>
            Iibet priſmatis axem, parallelogrammorum lat eri
              <lb/>
            bus, quæ ab oppoſitis planis ducũtur æquidiſtare.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
        <div type="section" level="1" n="71">
          <head xml:space="preserve">THEOREMA VI. PROPOSITIO VI.</head>
          <p>
            <s xml:space="preserve">Cuiuslibet priſmatis centrum grauitatis eſt in
              <lb/>
            plano, quod oppoſitis planis æquidiſtans, reli-
              <lb/>
            quorum planorum latera bifariam diuidit.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Sit priſma, in quo plana, quæ opponuntur ſint trian-
              <lb/>
            gula a c e, b d f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">parallelogrammorum latera a b, c d,
              <lb/>
            e f bifariam diuidãtur in punctis g h _K_: </s>
            <s xml:space="preserve">per diuiſiones au-
              <lb/>
            tem planum ducatur; </s>
            <s xml:space="preserve">cuius ſectio figura g h _K_. </s>
            <s xml:space="preserve">eritlinea
              <lb/>
              <anchor type="note" xlink:label="note-0127-01a" xlink:href="note-0127-01"/>
            g h æquidiſtans lineis a c, b d & </s>
            <s xml:space="preserve">h k ipſis c e, d f. </s>
            <s xml:space="preserve">quare ex
              <lb/>
            decimaquinta undecimi elementorum, planum illud pla
              <lb/>
            nis a c e, b d f æquidiſtabit, & </s>
            <s xml:space="preserve">ſaciet ſectionem figu-
              <lb/>
              <anchor type="note" xlink:label="note-0127-02a" xlink:href="note-0127-02"/>
            ram ipſis æqualem, & </s>
            <s xml:space="preserve">ſimilem, ut proxime demonſtra-
              <lb/>
            uimus. </s>
            <s xml:space="preserve">Dico centrum grauitatis priſmatis eſſe in plano
              <lb/>
            g h
              <emph style="sc">K</emph>
            . </s>
            <s xml:space="preserve">Si enim fieri poteſt, ſit eius centrum l: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ducatur
              <lb/>
            l m uſque ad planum g h
              <emph style="sc">K</emph>
            , quæ ipſi a b æquidiſtet.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>