Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[61. Figure]
[62. Figure]
[63. Figure]
[64. Figure]
[65. Figure]
[66. Figure]
[67. Figure]
[68. Figure]
[69. Figure]
[70. Figure]
[71. Figure]
[72. Figure]
[73. Figure]
[74. Figure]
[75. Figure]
[76. Figure]
[77. Figure]
[78. Figure]
[79. Figure]
[80. Figure]
[81. Figure]
[82. Figure]
[83. Figure]
[84. Figure]
[85. Figure]
[86. Figure]
[87. Figure]
[88. Figure]
[89. Figure]
[90. Figure]
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="72">
          <pb file="0130" n="130" rhead="FED. COMMANDINI"/>
          <p>
            <s xml:space="preserve">SIT cylindrus, uel cylindri po rtio a c: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">plano per a-
              <lb/>
            xem ducto ſecetur; </s>
            <s xml:space="preserve">cuius ſectio ſit parallelogrammum a b
              <lb/>
            c d: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">bifariam diuiſis a d, b c parallelogrammi lateribus,
              <lb/>
            per diuiſionum puncta e f planum baſi æquidiſtans duca-
              <lb/>
            tur; </s>
            <s xml:space="preserve">quod faciet ſectionem, in cy lindro quidem circulum
              <lb/>
            æqualem iis, qui ſunt in baſibus, ut demonſtrauit Serenus
              <lb/>
            in libro cylindricorum, propoſitione quinta: </s>
            <s xml:space="preserve">in cylindri
              <lb/>
            uero portione ellipſim æqualem, & </s>
            <s xml:space="preserve">ſimilem eis, quæ ſunt
              <lb/>
            in oppoſitis planis, quod nos
              <lb/>
              <anchor type="figure" xlink:label="fig-0130-01a" xlink:href="fig-0130-01"/>
            demonſtrauimus in commen
              <lb/>
            tariis in librum Archimedis
              <lb/>
            de conoidibus, & </s>
            <s xml:space="preserve">ſphæroidi-
              <lb/>
            bus. </s>
            <s xml:space="preserve">Dico centrum grauita-
              <lb/>
            tis cylindri, uel cylindri por-
              <lb/>
            tionis eſſe in plano e f. </s>
            <s xml:space="preserve">Si enĩ
              <lb/>
            fieri poteſt, fit centrum g: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            ducatur g h ipſi a d æquidi-
              <lb/>
            ſtans, uſque ad e f planum.
              <lb/>
            </s>
            <s xml:space="preserve">Itaque linea a e continenter
              <lb/>
            diuiſa bifariam, erit tandem
              <lb/>
            pars aliqua ipſius k e, minor
              <lb/>
            g h. </s>
            <s xml:space="preserve">Diuidantur ergo lineæ
              <lb/>
            a e, e d in partes æquales ipſi
              <lb/>
            k e: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per diuiſiones plana ba
              <lb/>
            ſibus æquidiſtantia ducãtur. </s>
            <s xml:space="preserve">
              <lb/>
            erunt iam ſectiones, figuræ æ-
              <lb/>
            quales, & </s>
            <s xml:space="preserve">ſimiles eis, quæ ſunt
              <lb/>
            in baſibus: </s>
            <s xml:space="preserve">atque erit cylindrus in cylindros diuiſus: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">cy
              <lb/>
            lindri portio in portiones æquales, & </s>
            <s xml:space="preserve">ſimiles ipſi k f. </s>
            <s xml:space="preserve">reli-
              <lb/>
            qua ſimiliter, ut ſuperius in priſmate concludentur.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0130-01" xlink:href="fig-0130-01a">
              <image file="0130-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0130-01"/>
            </figure>
          </div>
        </div>
      </text>
    </echo>