Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[61. Figure]
[62. Figure]
[63. Figure]
[64. Figure]
[65. Figure]
[66. Figure]
[67. Figure]
[68. Figure]
[69. Figure]
[70. Figure]
[71. Figure]
[72. Figure]
[73. Figure]
[74. Figure]
[75. Figure]
[76. Figure]
[77. Figure]
[78. Figure]
[79. Figure]
[80. Figure]
[81. Figure]
[82. Figure]
[83. Figure]
[84. Figure]
[85. Figure]
[86. Figure]
[87. Figure]
[88. Figure]
[89. Figure]
[90. Figure]
< >
page |< < (10) of 213 > >|
DE CENTRO GRA VIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="72">
          <pb o="10" file="0131" n="131" rhead="DE CENTRO GRA VIT. SOLID."/>
          <figure>
            <image file="0131-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0131-01"/>
          </figure>
        </div>
        <div type="section" level="1" n="73">
          <head xml:space="preserve">THE OREMA VIII. PROPOSITIO VIII.</head>
          <p>
            <s xml:space="preserve">Cuiuslibet priſmatis, & </s>
            <s xml:space="preserve">cuiuslibet cylindri, uel
              <lb/>
            cylindri portionis grauitatis centrum in medio
              <lb/>
            ipſius axis conſiſtit.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Sit primum a f priſma æ quidiſtantibus planis contentũ,
              <lb/>
            quod ſolidum parallelepipedum appellatur: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">oppoſito-
              <lb/>
            rum planorum c f, a h, d a, f g latera bifariam diuidantur in
              <lb/>
            punctis k l m n o p q r s t u x: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per diuiſiones ducantur
              <lb/>
            plana κ n, o r, s x. </s>
            <s xml:space="preserve">communes autem eorum planorum ſe-
              <lb/>
            ctiones ſint lineæ y z, θ φ, χ ψ: </s>
            <s xml:space="preserve">quæ in puncto ω conueniãt.
              <lb/>
            </s>
            <s xml:space="preserve">erit ex decima eiuſdem libri Archimedis parallelogrammi
              <lb/>
            c f centrum grauitatis punctum y; </s>
            <s xml:space="preserve">parallelogrammi a h</s>
          </p>
        </div>
      </text>
    </echo>