Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[61. Figure]
[62. Figure]
[63. Figure]
[64. Figure]
[65. Figure]
[66. Figure]
[67. Figure]
[68. Figure]
[69. Figure]
[70. Figure]
[71. Figure]
[72. Figure]
[73. Figure]
[74. Figure]
[75. Figure]
[76. Figure]
[77. Figure]
[78. Figure]
[79. Figure]
[80. Figure]
[81. Figure]
[82. Figure]
[83. Figure]
[84. Figure]
[85. Figure]
[86. Figure]
[87. Figure]
[88. Figure]
[89. Figure]
[90. Figure]
< >
page |< < (13) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="73">
          <p>
            <s xml:space="preserve">
              <pb o="13" file="0137" n="137" rhead="DE CENTRO GRAVIT. SOLID."/>
            trianguli g h K, & </s>
            <s xml:space="preserve">ipſius ρ τ axis medium.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <note position="left" xlink:label="note-0132-02" xlink:href="note-0132-02a" xml:space="preserve">5. huius</note>
            <figure xlink:label="fig-0133-01" xlink:href="fig-0133-01a">
              <image file="0133-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0133-01"/>
            </figure>
            <note position="right" xlink:label="note-0133-01" xlink:href="note-0133-01a" xml:space="preserve">2. ſexti.</note>
            <note position="right" xlink:label="note-0133-02" xlink:href="note-0133-02a" xml:space="preserve">I1. quinti</note>
            <note position="right" xlink:label="note-0133-03" xlink:href="note-0133-03a" xml:space="preserve">2. ſexti.</note>
            <note position="left" xlink:label="note-0134-01" xlink:href="note-0134-01a" xml:space="preserve">19. ſexti</note>
            <figure xlink:label="fig-0134-01" xlink:href="fig-0134-01a">
              <image file="0134-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0134-01"/>
            </figure>
            <note position="left" xlink:label="note-0134-02" xlink:href="note-0134-02a" xml:space="preserve">2. uel 121
              <lb/>
            quinti.</note>
            <note position="right" xlink:label="note-0135-01" xlink:href="note-0135-01a" xml:space="preserve">8. quinti.</note>
            <note position="right" xlink:label="note-0135-02" xlink:href="note-0135-02a" xml:space="preserve">28. unde
              <lb/>
            cimi</note>
            <note position="right" xlink:label="note-0135-03" xlink:href="note-0135-03a" xml:space="preserve">15. quinti</note>
            <note position="right" xlink:label="note-0135-04" xlink:href="note-0135-04a" xml:space="preserve">19. quinti
              <lb/>
            apud Cã
              <lb/>
            panum.</note>
            <figure xlink:label="fig-0136-01" xlink:href="fig-0136-01a">
              <image file="0136-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0136-01"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Sit priſma a g, cuius oppoſita plana ſint quadrilatera
              <lb/>
            a b c d, e f g h: </s>
            <s xml:space="preserve">ſecenturq; </s>
            <s xml:space="preserve">a e, b f, c g, d h bifariam: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per di-
              <lb/>
            uiſiones planum ducatur; </s>
            <s xml:space="preserve">quod ſectionem faciat quadrila-
              <lb/>
            terum _K_ l m n. </s>
            <s xml:space="preserve">Deinde iuncta a c per lineas a c, a e ducatur
              <lb/>
            planum ſecãs priſma, quod ipſum diuidet in duo priſmata
              <lb/>
            triangulares baſes habentia a b c e f g, a d c e h g. </s>
            <s xml:space="preserve">Sint autẽ
              <lb/>
            triangulorum a b c, e f g gra-
              <lb/>
              <anchor type="figure" xlink:label="fig-0137-01a" xlink:href="fig-0137-01"/>
            uitatis centra o p: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">triangu-
              <lb/>
            lorum a d c, e h g centra q r:
              <lb/>
            </s>
            <s xml:space="preserve">iunganturq; </s>
            <s xml:space="preserve">o p, q r; </s>
            <s xml:space="preserve">quæ pla-
              <lb/>
            no _k_ l m n occurrant in pun-
              <lb/>
            ctis s t. </s>
            <s xml:space="preserve">erit ex iis, quæ demon
              <lb/>
            ſtrauimus, punctum s grauita
              <lb/>
            tis centrum trianguli k l m; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            ipſius priſmatis a b c e f g: </s>
            <s xml:space="preserve">pun
              <lb/>
            ctum uero t centrum grauita
              <lb/>
            tis trianguli _K_ n m, & </s>
            <s xml:space="preserve">priſma-
              <lb/>
            tis a d c, e h g. </s>
            <s xml:space="preserve">iunctis igitur
              <lb/>
            o q, p r, s t, erit in linea o q cẽ
              <lb/>
            trum grauitatis quadrilateri
              <lb/>
            a b c d, quod ſit u: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">in linea
              <lb/>
            p r cẽtrum quadrilateri e f g h
              <lb/>
            ſit autem x. </s>
            <s xml:space="preserve">deniqueiungatur
              <lb/>
            u x, quæ ſecet lineam ſ t in y. </s>
            <s xml:space="preserve">ſe
              <lb/>
            cabit enim cum ſint in eodem
              <lb/>
              <anchor type="note" xlink:label="note-0137-01a" xlink:href="note-0137-01"/>
            plano: </s>
            <s xml:space="preserve">atq; </s>
            <s xml:space="preserve">erit y grauitatis centrum quadril ateri _K_ lm n.
              <lb/>
            </s>
            <s xml:space="preserve">Dico idem punctum y centrum quoque gra uitatis eſſe to-
              <lb/>
            tius priſmatis. </s>
            <s xml:space="preserve">Quoniam enim quadri lateri k lm n graui-
              <lb/>
            tatis centrum eſt y: </s>
            <s xml:space="preserve">linea s y ad y t eandem proportionem
              <lb/>
            habebit, quam triangulum k n m ad triangulum k lm, ex 8
              <lb/>
            Archimedis de centro grauitatis planorum. </s>
            <s xml:space="preserve">Vtautem triã
              <lb/>
            gulum k n m ad ipſum k l m, hoc eſt ut triangulum a d c ad
              <lb/>
            triangulum a b c, æqualia enim ſunt, ita priſina a d c e h g</s>
          </p>
        </div>
      </text>
    </echo>