Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[11. Figure]
[12. Figure]
[13. Figure]
[14. Figure]
[15. Figure]
[16. Figure]
[17. Figure]
[18. Figure]
[19. Figure]
[20. Figure]
[21. Figure]
[22. Figure]
[23. Figure]
[24. Figure]
[25. Figure]
[26. Figure]
[27. Figure]
[28. Figure]
[29. Figure]
[30. Figure]
[31. Figure]
[32. Figure]
[33. Figure]
[34. Figure]
[35. Figure]
[36. Figure]
[37. Figure]
[38. Figure]
[39. Figure]
[40. Figure]
< >
page |< < (12) of 213 > >|
DE IIS QVAE VEH. IN AQVA.
m productam per pendicularem eſſe ad ipſam e f, quam
quidem ſecet in n.
D_vcatvr_ enim à puncto g linea g o ad rectos angulos ipſi
e f, diametrum in o ſecans:
& rurſus ab eodem puncto ducatur g p
ſecet autem ipſa diameter producta
lineã e f in q.
erit p b ipſi b q æqualis, ex trigeſimaquinta primi co
nicorum:
& g p pro-
cor. 8. ſe-
xti.

[Figure 21]
portionalis ĩter q p, p o
17. ſextĩ.ctangulo o p q æquale
erit:
ſed etiã æquale est
rectangulo cõtento ipſa
p b, &
linea, iuxta quã
poſſunt, quæ à ſectione
ducuntur, ex undecima
primi conicorum.
ergo
14. ſexti.quæ est proportio q p
iuxta quã poſſunt, quæ
ſam p o:
est autem q p
dupla p b:
cũ ſint p b,
b q æquales, ut dictum
est.
Linea igitur iuxta
quam poſſunt, quæ à ſe-
ctione ducuntur ipſi-
us p o dupla erit:
&
propterea p o æqualis