Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
page
|<
<
(8)
of 213
>
>|
DE IIS QVAE VEH. IN AQVA.
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
18
">
<
p
style
="
it
">
<
s
xml:space
="
preserve
">
<
pb
o
="
8
"
file
="
0027
"
n
="
27
"
rhead
="
DE IIS QVAE VEH. IN AQVA.
"/>
neas; </
s
>
<
s
xml:space
="
preserve
">neutra alteri obſistit, quo minus moueatur; </
s
>
<
s
xml:space
="
preserve
">ídq; </
s
>
<
s
xml:space
="
preserve
">continenter
<
lb
/>
fiat, dum portio in rectum fuerit conſtituta: </
s
>
<
s
xml:space
="
preserve
">tunc enim utrarumque
<
lb
/>
magnitudinum grauitatis centra in unam, eandémq; </
s
>
<
s
xml:space
="
preserve
">perpendicula-
<
lb
/>
rum conueniunt, uidelicet in axem portionis: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">quanto conatu, im
<
lb
/>
petùue ea, quæ in humido eſt ſurſum, tanto quæ extra humidum de-
<
lb
/>
orſum per eandem lineam contendit. </
s
>
<
s
xml:space
="
preserve
">quare cum altera alteram non
<
lb
/>
ſuperet, non amplius mouebitur portio; </
s
>
<
s
xml:space
="
preserve
">ſed conſiſtet, manebítq; </
s
>
<
s
xml:space
="
preserve
">in
<
lb
/>
eodem ſemper ſitu; </
s
>
<
s
xml:space
="
preserve
">niſi forte aliqua cauſſa extrinſecus acceſſerit.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
6
">
<
note
position
="
left
"
xlink:label
="
note-0026-04
"
xlink:href
="
note-0026-04a
"
xml:space
="
preserve
">F</
note
>
</
div
>
</
div
>
<
div
type
="
section
"
level
="
1
"
n
="
19
">
<
head
xml:space
="
preserve
">PROPOSITIO IX.</
head
>
<
p
>
<
s
xml:space
="
preserve
">
<
emph
style
="
sc
">Qvòd</
emph
>
ſi figura humido leuior in humidum
<
lb
/>
demittatur, ita ut baſis tota ſit in humido; </
s
>
<
s
xml:space
="
preserve
">inſide
<
lb
/>
bit recta, ita ut axis ipſius ſecundum perpendicu
<
lb
/>
larem conſtituatur.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:space
="
preserve
">INTELLIGATVR enim magnitudo aliqua, qua-
<
lb
/>
lis dicta eſt, in humidum demiſſa: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">intelligatur planum
<
lb
/>
per axem portionis, & </
s
>
<
s
xml:space
="
preserve
">per centrum terræ ductum: </
s
>
<
s
xml:space
="
preserve
">ſitq; </
s
>
<
s
xml:space
="
preserve
">ſu
<
lb
/>
perficiei quidem humidi ſectio a b c d circunferentia; </
s
>
<
s
xml:space
="
preserve
">figu
<
lb
/>
ræ autem ſectio circun ferentia e f h: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">ſit e h recta linea:
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">axis portionis f t. </
s
>
<
s
xml:space
="
preserve
">Si igitur fieri poteſt, non ſit f t ſecun
<
lb
/>
dum perpendicularem.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
figure
>
<
image
file
="
0027-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0027-01
"/>
</
figure
>
<
p
>
<
s
xml:space
="
preserve
">Demonſtrandum eſt non
<
lb
/>
manerefiguram; </
s
>
<
s
xml:space
="
preserve
">ſed in re
<
lb
/>
ctum reſtitui. </
s
>
<
s
xml:space
="
preserve
">eſt autem
<
lb
/>
centrum ſphæræ in linea
<
lb
/>
f t: </
s
>
<
s
xml:space
="
preserve
">rurſus enim ſit figu-
<
lb
/>
ra primo maior dimidia
<
lb
/>
ſphæra: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">ſphæræ centrũ
<
lb
/>
in dimidia ſphæra ſit pun-
<
lb
/>
ctum t; </
s
>
<
s
xml:space
="
preserve
">in minore portione p; </
s
>
<
s
xml:space
="
preserve
">in maiori uero ſit _k_: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">per
<
lb
/>
_k_, & </
s
>
<
s
xml:space
="
preserve
">terræ centrum l ducatur _k_ l. </
s
>
<
s
xml:space
="
preserve
">Itaque figura quæ eſt
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0027-01a
"
xlink:href
="
note-0027-01
"/>
</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>