Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[1. None]
[2. ARCHIMEDIS DE IIS QVAE VEHVNTVR IN AQVA LIBRI DVO. A FEDERICO COMMANDINO VRBINATE IN PRISTINVM NITOREM RESTITVTI, ET COMMENTARIIS ILLVSTRATI.]
[3. CVM PRIVILEGIO IN ANNOS X. BONONIAE,]
[4. M D LXV.]
[5. RANVTIO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.]
[6. Federicus Commandinus.]
[7. ARCHIMEDIS DE IIS QVAE VEHVNTVR IN AQVA LIBER PRIMVS. CVM COMMENTARIIS FEDERICI COMMANDINI VRBINATIS. POSITIO.]
[8. PROPOSITIO I.]
[9. PROPOSITIO II.]
[10. PROPOSITIO III.]
[11. PROPOSITIO IIII.]
[12. PROPOSITIO V.]
[13. PROPOSITIO VI.]
[14. PROPOSITIO VII.]
[15. POSITIO II.]
[16. COMMENTARIVS.]
[17. PROPOSITIO VIII.]
[18. COMMENTARIVS.]
[19. PROPOSITIO IX.]
[20. COMMENTARIVS.]
[21. ARCHIMEDIS DE IIS QVAE VEHVNTVR IN AQVA LIBER SECVNDVS. CVM COMMENTARIIS FEDERICI COMMANDINI VRBINATIS. PROPOSITIO I.]
[22. PROPOSITIO II.]
[23. COMMENTARIVS.]
[24. PROPOSITIO III.]
[25. PROPOSITIO IIII.]
[26. COMMENTARIVS.]
[27. PROPOSITIO V.]
[28. COMMENTARIVS.]
[29. PROPOSITIO VI.]
[30. COMMENTARIVS.]
< >
page |< < (6) of 213 > >|
DE IIS QVAE VEH. IN AQVA.

COMMENTARIVS.

AT ucro ea, quæ feruntur deorſum, ſecundum perpendicula-
rem, quæ per centrum grauit atis ipſorum ducitur, ſimiliter ferri,
uel tanquam notum, uel ut ab alijs poſitum prætermiſit.

PROPOSITIO VIII.

SI aliqua magnitudo ſolida leuior humido,
Aquæ figuram portionis ſphæræ habeat, in humi-
Bdum demittatur, ita vt baſis portionis non tan-
gat humidum:
figura inſidebit recta, ita vt axis
portionis ſit ſecundum perpendicularem.
Et ſi
ab aliquo inclinetur figura, vt baſis portionis hu-
midum cõtingat;
non manebit inclinata ſi demit
tatur, ſed recta reſtituetur.
[INTELLIGATVR quædam magnitudo, qualis
Suppleta
a Federi-
co Cõm.
dicta eſt, in humidum demiſſa:
& ducatur planum per axẽ
portionis, &
per terræ
Figure: /permanent/library/4E7V2WGH/figures/0023-01 not scanned
[Figure 12]
centrum, ut ſit ſuperfi-
ciei humidi ſectio circũ
ferentia a b c d:
& figu-
ræ ſectio e f h circunfe-
rentia:
ſit autem e h
recta linea;
& f t axis
portionis.
Si igitur in-
clinetur figura, ita ut a-
xis portionis f t non ſit
ſecundum perpendicu-
larem.
demonſtrandum eſt, non manere ipſam figu-
ram;
ſed in rectum reſtitui. Itaque centrum ſphæræ eſt

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index