Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[31. LEMMAI.]
[32. LEMMA II.]
[33. LEMMA III.]
[34. LEMMA IIII.]
[35. PROPOSITIO VII.]
[36. PROPOSITIO VIII.]
[37. COMMENTARIVS.]
[38. PROPOSITIO IX.]
[39. COMMENTARIVS.]
[40. PROPOSITIO X.]
[41. COMMENTARIVS.]
[42. LEMMA I.]
[43. LEMMA II.]
[44. LEMMA III.]
[45. LEMMA IIII.]
[46. LEMMA V.]
[47. LEMMA VI.]
[48. II.]
[49. III.]
[50. IIII.]
[51. V.]
[52. DEMONSTRATIO SECVNDAE PARTIS.]
[53. COMMENTARIVS.]
[54. DEMONSTRATIO TERTIAE PARTIS.]
[55. COMMENTARIVS.]
[56. DEMONSTRATIO QVARTAE PARTIS.]
[57. DEMONSTRATIO QVINT AE PARTIS.]
[58. FINIS LIBRORVM ARCHIMEDIS DE IIS, QVAE IN AQVA VEHVNTVR.]
[59. FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORV M.]
[60. CVM PRIVILEGIO IN ANNOS X. BONONIAE, Ex Officina Alexandri Benacii. M D LXV.]
< >
page |< < (42) of 213 > >|
DE IIS QVAE VEH. IN AQVA.
clinata, ut baſis humidum non contingat, ſectur plano per axem,
recto ad ſuperficiem humidi, ut ſectio ſit a m o l rectanguli coni ſe-
ctio:
ſuperficiei humidi ſectio ſit i o: axis portionis, & ſectionis
diameter b d;
quæ in eaſdem, quas diximus, partes ſecetur: duca-
turq;
m n quidem ipſi i o æquidiſtans, ut in puncto m ſectionem
cótingat:
mt uero æquidiſtans ipſi b d: & m s ad eandem perpen
dicularis.
Demonſtrandum eſt non manere portionem, ſed inclinari
ita, ut in uno puncto contingat ſuperficiem humidi.
ducatur enim p c
ad ipſam b d perpendicularis:
& iuncta a f uſque ad ſectionem
producatur in q:
& per p ducatur p φ ipſi a q æquidiſtans. erunt
iam ex ijs, quæ demonſtrauimus a f, f q inter ſe ſe æquales.
& cum
portio ad humi-
Figure: /permanent/library/4E7V2WGH/figures/0095-01 not scanned
[Figure 60]
dum eam in gra-
uitate proportio
nem habeat, quá
quadratú p f ad
b d quadratum:
atque eandem ha
beat portio ipſi-
us demerſa ad to
tam portionem;

hoc eſt quadratú
m t ad quadratú
8. quinti.b d:
erit quadra
tum m t quadra-
to p f æquale:
&
idcirco linea m t
æqualis lmeæ p
f.
Itaque quoniam in portionibus æqualibus, & ſimilibus a p q l, a
m o l ductæ ſunt lineæ a q, i o, quæ æquales portiones abſcindunt;
illa quidem ab extremitate baſis; hæc uero non ab extremitate: ſe-
quitur ut a q, quæ ab extremitate ducitur, minorem acutum angulú
contineat cum diametro portionis, quàm ipſa i o.
Sed linea p φ li-
neæ a q æquidiſtat, &
m n ipſi i o. angulus igitur ad φ angulo ad n

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index