Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[61. ALEXANDRO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.]
[62. FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORVM. DIFFINITIONES.]
[63. PETITIONES.]
[64. THEOREMA I. PROPOSITIO I.]
[65. THEOREMA II. PROPOSITIO II.]
[66. THE OREMA III. PROPOSITIO III.]
[67. THE OREMA IIII. PROPOSITIO IIII.]
[68. ALITER.]
[69. THEOREMA V. PROPOSITIO V.]
[70. COROLLARIVM.]
[71. THEOREMA VI. PROPOSITIO VI.]
[72. THE OREMA VII. PROPOSITIO VII.]
[73. THE OREMA VIII. PROPOSITIO VIII.]
[74. THE OREMA IX. PROPOSITIO IX.]
[75. PROBLEMA I. PROPOSITIO X.]
[76. PROBLEMA II. PROPOSITIO XI.]
[77. PROBLEMA III. PROPOSITIO XII.]
[78. PROBLEMA IIII. PROPOSITIO XIII.]
[79. THEOREMA X. PROPOSITIO XIIII.]
[80. THE OREMA XI. PROPOSITIO XV.]
[81. THE OREMA XII. PROPOSITIO XVI.]
[82. THE OREMA XIII. PROPOSITIO XVII.]
[83. THEOREMA XIIII. PROPOSITIO XVIII.]
[84. THEOREMA XV. PROPOSITIO XIX.]
[85. THE OREMA XVI. PROPOSITIO XX.]
[86. THEOREMA XVII. PROPOSITIO XXI.]
[87. THE OREMA XVIII. PROPOSITIO XXII.]
[88. THEOREMA XIX. PROPOSITIO XXIII.]
[89. PROBLEMA V. PROPOSITIO XXIIII.]
[90. THEOREMA XX. PROPOSITIO XXV.]
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="62">
          <p>
            <s xml:space="preserve">
              <pb file="0114" n="114" rhead="FED. COMMANDINI"/>
            tes æqueponderantes ipſam diuidet.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">2 Priſmatis, cylindri, & </s>
            <s xml:space="preserve">portionis cylindri axem
              <lb/>
            appello rectam lineam, quæ oppoſitorum plano-
              <lb/>
            rum centra grauitatis coniungit.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">3 Pyramidis, coni, & </s>
            <s xml:space="preserve">portionis coni axem dico li
              <lb/>
            neam, quæ à uertice ad centrum grauitatis baſis
              <lb/>
            perducitur.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">4 Si pyramis, conus, portio coni, uel conoidis ſe-
              <lb/>
            cetur plano baſi æquidiſtante, pars, quæ eſt ad ba-
              <lb/>
            ſim, fruſtum pyramidis, coni, portionis coni, uel
              <lb/>
            conoidis dicetur; </s>
            <s xml:space="preserve">quorum plana æquidiſtantia,
              <lb/>
            quæ opponuntur ſimilia ſunt, & </s>
            <s xml:space="preserve">inæqualia: </s>
            <s xml:space="preserve">axes
              <lb/>
            uero ſunt axium figurarum partes, quæ in ipſis
              <lb/>
            comprehenduntur.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
        <div type="section" level="1" n="63">
          <head xml:space="preserve">PETITIONES.</head>
          <p>
            <s xml:space="preserve">1 Solidarum figurarum ſimilium centra grauita-
              <lb/>
            tis ſimiliter ſunt poſita.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">2 Solidis figuris ſimilibus, & </s>
            <s xml:space="preserve">æqualibus inter ſe
              <lb/>
            aptatis, centra quoque grauitatis ipſarum inter ſe
              <lb/>
            aptata erunt.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
        <div type="section" level="1" n="64">
          <head xml:space="preserve">THEOREMA I. PROPOSITIO I.</head>
          <p>
            <s xml:space="preserve">Omnis figuræ rectilineæ in circulo deſcriptæ,
              <lb/>
            quæ æqualibus lateribus, & </s>
            <s xml:space="preserve">angulis contine-</s>
          </p>
        </div>
      </text>
    </echo>